| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 25801 |
\begin{align*}
y^{\prime }&=y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
420.215 |
|
| 25802 |
\begin{align*}
y^{\prime }&=\sqrt {1-\frac {y^{2}}{x^{2}}}+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
422.952 |
|
| 25803 |
\begin{align*}
\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime }-a \sqrt {\left (1+y^{2}\right )^{3}}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
423.671 |
|
| 25804 |
\begin{align*}
\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 y x +x^{2}+2\right ) y^{\prime }+2 y^{2}+1&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
424.055 |
|
| 25805 |
\begin{align*}
x \left (\left (m -1\right ) \left (A x +B \right ) y+m \left (d \,x^{2}+e x +F \right )\right ) y^{\prime }&=\left (A \left (1-n \right ) x -B n \right ) y^{2}+\left (d \left (2-n \right ) x^{2}+e \left (1-n \right ) x -F n \right ) y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
426.141 |
|
| 25806 |
\begin{align*}
\left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\frac {b \left (a +\beta \right )}{\alpha }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
437.849 |
|
| 25807 |
\begin{align*}
3 y {y^{\prime }}^{2}-2 x y^{\prime } y+4 y^{2}-x^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
443.658 |
|
| 25808 |
\begin{align*}
\left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
445.649 |
|
| 25809 |
\begin{align*}
\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+y^{\prime } x +y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
451.050 |
|
| 25810 |
\begin{align*}
\left (a \coth \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \coth \left (\mu x \right ) y-d^{2}+c d \coth \left (\mu x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
458.147 |
|
| 25811 |
\begin{align*}
\left (x -1\right ) \left (x -2\right ) y^{\prime \prime }-\left (2 x -3\right ) y^{\prime }+y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
474.982 |
|
| 25812 |
\begin{align*}
\left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\gamma &=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
488.815 |
|
| 25813 |
\begin{align*}
\left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (2 n +1\right ) a x y^{\prime }+c y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
491.790 |
|
| 25814 |
\begin{align*}
a x y-b +\left (c x y-d \right ) x y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
502.292 |
|
| 25815 |
\begin{align*}
\left (\operatorname {c1} x +\operatorname {c0} \right ) y+\left (\operatorname {b2} \,x^{2}+\operatorname {b1} x +\operatorname {b0} \right ) y^{\prime }+\left (\operatorname {a1} -x \right ) \left (\operatorname {a2} -x \right ) \left (\operatorname {a3} -x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
526.608 |
|
| 25816 |
\begin{align*}
c y+b x y^{\prime }+\left (a \,x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
550.562 |
|
| 25817 |
\begin{align*}
\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\left (\alpha \gamma +\beta \right ) x +\beta \lambda \right ) y^{\prime }-\left (x \alpha +\beta \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
688.641 |
|
| 25818 | \begin{align*}
-y+y^{\prime } x&=x^{2} \sqrt {x^{2}-y^{2}} \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 697.357 |
|
| 25819 |
\begin{align*}
\left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (y^{2}+x^{2}\right )^{{3}/{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
703.941 |
|
| 25820 |
\begin{align*}
{y^{\prime }}^{4} x -2 y {y^{\prime }}^{3}+12 x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
806.220 |
|
| 25821 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x -\left (v +2\right ) \left (v -1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
816.631 |
|
| 25822 |
\begin{align*}
{y^{\prime }}^{4} x -2 y {y^{\prime }}^{3}+12 x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
958.542 |
|
| 25823 |
\begin{align*}
y&=y^{\prime } x -\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
991.450 |
|
| 25824 |
\begin{align*}
y^{\prime \prime }&=-\left (\frac {1-\operatorname {a1} -\operatorname {b1}}{x -\operatorname {c1}}+\frac {1-\operatorname {a2} -\operatorname {b2}}{x -\operatorname {c2}}+\frac {1-\operatorname {a3} -\operatorname {b3}}{x -\operatorname {c3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {a1} \operatorname {b1} \left (\operatorname {c1} -\operatorname {c3} \right ) \left (\operatorname {c1} -\operatorname {c2} \right )}{x -\operatorname {c1}}+\frac {\operatorname {a2} \operatorname {b2} \left (\operatorname {c2} -\operatorname {c1} \right ) \left (\operatorname {c2} -\operatorname {c3} \right )}{x -\operatorname {c2}}+\frac {\operatorname {a3} \operatorname {b3} \left (\operatorname {c3} -\operatorname {c2} \right ) \left (\operatorname {c3} -\operatorname {c1} \right )}{x -\operatorname {c3}}\right ) y}{\left (x -\operatorname {c1} \right ) \left (x -\operatorname {c2} \right ) \left (x -\operatorname {c3} \right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1012.565 |
|
| 25825 |
\begin{align*}
\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\lambda ^{3}+x^{3}\right ) y^{\prime }-\left (\lambda ^{2}-\lambda x +x^{2}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1014.182 |
|
| 25826 |
\begin{align*}
y^{\prime \prime }&=-\left (\frac {\left (1-\operatorname {al1} -\operatorname {bl1} \right ) \operatorname {b1}}{\operatorname {b1} x -\operatorname {a1}}+\frac {\left (1-\operatorname {al2} -\operatorname {bl2} \right ) \operatorname {b2}}{\operatorname {b2} x -\operatorname {a2}}+\frac {\left (1-\operatorname {al3} -\operatorname {bl3} \right ) \operatorname {b3}}{\operatorname {b3} x -\operatorname {a3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {al1} \operatorname {bl1} \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right ) \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right )}{\operatorname {b1} x -\operatorname {a1}}+\frac {\operatorname {al2} \operatorname {bl2} \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right ) \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right )}{\operatorname {b2} x -\operatorname {a2}}+\frac {\operatorname {al3} \operatorname {bl3} \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right ) \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right )}{\operatorname {b3} x -\operatorname {a3}}\right ) y}{\left (\operatorname {b1} x -\operatorname {a1} \right ) \left (\operatorname {b2} x -\operatorname {a2} \right ) \left (\operatorname {b3} x -\operatorname {a3} \right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1105.003 |
|
| 25827 |
\begin{align*}
{y^{\prime \prime \prime }}^{2}+x^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1651.873 |
|
| 25828 |
\begin{align*}
y^{\prime }-y y^{\prime \prime }&=n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3782.339 |
|