2.3.247 Problems 24601 to 24700

Table 2.1025: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

24601

19067

\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

27.748

24602

7462

\begin{align*} 2 x +y^{2}-\cos \left (x +y\right )+\left (2 y x -\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

27.799

24603

19781

\begin{align*} \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=r y^{\prime \prime } \\ \end{align*}

27.838

24604

13635

\begin{align*} x \left (2 a \,x^{n} y+b \right ) y^{\prime }&=-a \left (3 n +m \right ) x^{n} y^{2}-b \left (2 n +m \right ) y+A \,x^{m}+x \,x^{-n} \\ \end{align*}

27.863

24605

201

\begin{align*} {\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

27.870

24606

19733

\begin{align*} \sqrt {t^{2}+T}&=T^{\prime } \\ \end{align*}

27.889

24607

5628

\begin{align*} {y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y}&=0 \\ \end{align*}

27.951

24608

5988

\begin{align*} \left (m +1\right ) x^{m} a \left (m \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

27.969

24609

17049

\begin{align*} y^{\prime }&=\sqrt {25-y^{2}} \\ y \left (-4\right ) &= 3 \\ \end{align*}

27.977

24610

19912

\begin{align*} \left (y x +1\right ) y-x \left (-y x +1\right ) y^{\prime }&=0 \\ \end{align*}

27.984

24611

19933

\begin{align*} y^{\prime }+\frac {x y}{-x^{2}+1}&=x \sqrt {y} \\ \end{align*}

28.033

24612

19706

\begin{align*} y^{\prime }&=\frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x} \\ \end{align*}

28.064

24613

13299

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }&=y^{2}+k \,{\mathrm e}^{\nu x} y-m^{2}+k m \,{\mathrm e}^{\nu x} \\ \end{align*}

28.092

24614

22423

\begin{align*} y^{\prime }&=\frac {2 \sin \left (2 x \right )-\tan \left (y\right )}{x \sec \left (y\right )^{2}} \\ y \left (\pi \right ) &= \frac {\pi }{4} \\ \end{align*}

28.106

24615

15618

\begin{align*} y^{\prime }&=y^{3} \\ y \left (-1\right ) &= 1 \\ \end{align*}

28.122

24616

22529

\begin{align*} \tan \left (y\right )-\tan \left (y\right )^{2} \cos \left (x \right )-x \sec \left (y\right )^{2} y^{\prime }&=0 \\ \end{align*}

28.130

24617

19923

\begin{align*} 2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

28.137

24618

24003

\begin{align*} y^{\prime \prime \prime }-y&=x^{n} \\ \end{align*}

28.137

24619

4778

\begin{align*} y^{\prime } x&=a \,x^{n}+b y+c y^{2} \\ \end{align*}

28.151

24620

10044

\begin{align*} y^{\prime }&=-4 \sin \left (x -y\right )-4 \\ \end{align*}

28.224

24621

15291

\begin{align*} x^{\prime }&=-3 x-3 y+z \\ y^{\prime }&=2 y+2 z+29 \,{\mathrm e}^{-t} \\ z^{\prime }&=5 x+y+z+39 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ z \left (0\right ) &= 3 \\ \end{align*}

28.240

24622

19289

\begin{align*} 2 x -2 y+\left (y-1\right ) y^{\prime }&=0 \\ \end{align*}

28.251

24623

15940

\begin{align*} y^{\prime }&=-\sin \left (y\right )^{5} \\ \end{align*}

28.319

24624

11531

\begin{align*} x y^{\prime } y-y^{2}+y x +x^{3}-2 x^{2}&=0 \\ \end{align*}

28.378

24625

25025

\begin{align*} y^{\prime }&=\tan \left (y\right )+\frac {2 \cos \left (t \right )}{\cos \left (y\right )} \\ \end{align*}

28.393

24626

4789

\begin{align*} y^{\prime } x +a \,x^{2} y^{2}+2 y&=b \\ \end{align*}

28.418

24627

19121

\begin{align*} x&=y^{\prime } y+a {y^{\prime }}^{2} \\ \end{align*}

28.454

24628

21930

\begin{align*} x y^{2}&=y-y^{\prime } x \\ \end{align*}

28.459

24629

23218

\begin{align*} y^{\prime }&=\frac {x -y+5}{2 x -y-3} \\ \end{align*}

28.541

24630

11906

\begin{align*} y^{\prime }&=\frac {x^{2}}{y+x^{{3}/{2}}} \\ \end{align*}

28.606

24631

5923

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

28.659

24632

4286

\begin{align*} y^{2} {\mathrm e}^{y x}+\cos \left (x \right )+\left ({\mathrm e}^{y x}+x y \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

28.667

24633

4084

\begin{align*} 3 x -y-6+\left (x +y+2\right ) y^{\prime }&=0 \\ y \left (2\right ) &= -2 \\ \end{align*}

28.736

24634

21860

\begin{align*} y^{2}-2 x y^{\prime } y+x^{2} {y^{\prime }}^{2}-{y^{\prime }}^{3}&=0 \\ \end{align*}

28.741

24635

12408

\begin{align*} 5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{{1}/{5}} y&=0 \\ \end{align*}

28.757

24636

19277

\begin{align*} x^{2} y^{\prime }&=3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \\ \end{align*}

28.765

24637

3580

\begin{align*} y^{\prime }&=\frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \\ y \left (\pi \right ) &= \frac {1}{\pi } \\ \end{align*}

28.832

24638

5422

\begin{align*} {y^{\prime }}^{2}-a y y^{\prime }-a x&=0 \\ \end{align*}

28.836

24639

2524

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

28.846

24640

5985

\begin{align*} -\left (c \,x^{2}+b x +a \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

28.851

24641

2934

\begin{align*} \frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )}&=0 \\ \end{align*}

28.859

24642

17085

\begin{align*} 3 \sin \left (t \right )-\sin \left (3 t \right )&=\left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \\ \end{align*}

28.892

24643

20011

\begin{align*} {y^{\prime }}^{3}+m {y^{\prime }}^{2}&=a \left (y+m x \right ) \\ \end{align*}

28.906

24644

19770

\begin{align*} 1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=0 \\ \end{align*}

28.941

24645

15258

\begin{align*} t^{3} y^{\prime \prime }-2 t y^{\prime }+y&=t^{4} \\ \end{align*}

28.960

24646

13968

\begin{align*} \frac {1}{\sqrt {y^{2}+x^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {y^{2}+x^{2}}}\right ) y^{\prime }&=0 \\ \end{align*}

28.990

24647

20989

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ y \left (0\right ) &= 1 \\ \end{align*}

28.991

24648

10436

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 \cos \left (x \right )^{3} y&=2 \cos \left (x \right )^{5} \\ \end{align*}

29.075

24649

11367

\begin{align*} y^{\prime }-\frac {\sqrt {{| y \left (y-1\right ) \left (-1+a y\right )|}}}{\sqrt {{| x \left (x -1\right ) \left (a x -1\right )|}}}&=0 \\ \end{align*}

29.106

24650

19238

\begin{align*} y^{\prime }&=\frac {y^{2}}{y x -x^{2}} \\ \end{align*}

29.151

24651

15856

\begin{align*} y^{\prime }&=y^{3} \\ y \left (0\right ) &= 1 \\ \end{align*}

29.214

24652

20964

\begin{align*} y^{\prime }&=\frac {x +y+1}{2+x}-{\mathrm e}^{\frac {x +y+1}{2+x}} \\ \end{align*}

29.241

24653

12612

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \\ \end{align*}

29.338

24654

12108

\begin{align*} y^{\prime }&=\frac {\left (3 x y^{2}+x +3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x \left (x +1\right )} \\ \end{align*}

29.341

24655

13568

\begin{align*} y^{\prime } y&=\left (\left (3-m \right ) x -1\right ) y-\left (m -1\right ) a x \\ \end{align*}

29.354

24656

10405

\begin{align*} y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3}&=0 \\ \end{align*}

29.458

24657

20433

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&={y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \\ \end{align*}

29.470

24658

13735

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

29.482

24659

5475

\begin{align*} x {y^{\prime }}^{2}-a y y^{\prime }+b&=0 \\ \end{align*}

29.484

24660

24167

\begin{align*} y^{2} y^{\prime }&=x \left (-y+y^{\prime } x \right ) {\mathrm e}^{\frac {x}{y}} \\ \end{align*}

29.495

24661

17254

\begin{align*} -y+t y^{\prime }&=t y^{3} \sin \left (t \right ) \\ \end{align*}

29.561

24662

19916

\begin{align*} x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

29.619

24663

5336

\begin{align*} y^{\prime } \sqrt {y x}+x -y&=\sqrt {y x} \\ \end{align*}

29.647

24664

13551

\begin{align*} y^{\prime } y-y&=a x +b \,x^{m} \\ \end{align*}

29.658

24665

19144

\begin{align*} a^{3} y^{\prime \prime \prime } y^{\prime \prime }&=\sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \\ \end{align*}

29.674

24666

19935

\begin{align*} \left (x +y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

29.674

24667

20970

\begin{align*} y^{\prime }&=\frac {y \ln \left (y\right )}{\sin \left (x \right )} \\ y \left (\frac {\pi }{2}\right ) &= {\mathrm e}^{{\mathrm e}} \\ \end{align*}

29.682

24668

7492

\begin{align*} \left (t +x+2\right ) x^{\prime }+3 t -x-6&=0 \\ \end{align*}

29.697

24669

13732

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y&=0 \\ \end{align*}

29.734

24670

11814

\begin{align*} {y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x&=0 \\ \end{align*}

29.757

24671

21859

\begin{align*} 2 y a \,x^{3}-a \,x^{2} y^{\prime }+c {y^{\prime }}^{3}&=0 \\ \end{align*}

29.809

24672

4713

\begin{align*} y^{\prime }&=y \sqrt {a +b y} \\ \end{align*}

29.816

24673

20439

\begin{align*} y^{\prime } y+x&=a {y^{\prime }}^{2} \\ \end{align*}

29.817

24674

2350

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

29.829

24675

5352

\begin{align*} \left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right )&=0 \\ \end{align*}

29.905

24676

20681

\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

29.906

24677

24156

\begin{align*} 5 v-u +\left (3 v-7 u \right ) v^{\prime }&=0 \\ \end{align*}

29.949

24678

22992

\begin{align*} y^{\prime } x -2 y \cos \left (x \right )&={\mathrm e}^{x} \sin \left (x \right )^{3} \\ \end{align*}

29.964

24679

17253

\begin{align*} 2 t y^{\prime }-y&=2 t y^{3} \cos \left (t \right ) \\ \end{align*}

30.071

24680

13036

\begin{align*} \left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+6 y y^{\prime \prime }-36 x {y^{\prime }}^{2}&=0 \\ \end{align*}

30.095

24681

25054

\begin{align*} y^{\prime }&=\cos \left (t +y\right ) \\ y \left (t_{0} \right ) &= y_{0} \\ \end{align*}

30.097

24682

14155

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} \left (x +1\right ) y^{\prime }+n^{2} y&=0 \\ \end{align*}

30.127

24683

10432

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

30.182

24684

4331

\begin{align*} 3+y+2 y^{2} \sin \left (x \right )^{2}+\left (x +2 y x -y \sin \left (2 x \right )\right ) y^{\prime }&=0 \\ \end{align*}

30.203

24685

7503

\begin{align*} y^{\prime }&=\frac {x^{2}-y^{2}}{3 x y} \\ \end{align*}

30.240

24686

2349

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

30.248

24687

5987

\begin{align*} -\left (c^{2} x^{4}+b^{2} x^{2}+a^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

30.299

24688

25506

\begin{align*} y^{\prime }&=-\frac {1+{\mathrm e}^{t y} y}{2 y+{\mathrm e}^{t y} t} \\ \end{align*}

30.301

24689

21385

\begin{align*} y^{2}-x^{2}-2 x y^{\prime } y&=0 \\ \end{align*}

30.306

24690

2514

\begin{align*} 2 t \cos \left (y\right )+3 t^{2} y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

30.360

24691

11629

\begin{align*} \left (\sqrt {1+y^{2}}+a x \right ) y^{\prime }+\sqrt {x^{2}+1}+a y&=0 \\ \end{align*}

30.398

24692

1723

\begin{align*} \cos \left (x \right ) \cos \left (y\right )+\left (\cos \left (y\right ) \sin \left (x \right )-\sin \left (x \right ) \sin \left (y\right )+y\right ) y^{\prime }&=0 \\ \end{align*}

30.400

24693

2955

\begin{align*} y-x^{2} \sqrt {x^{2}-y^{2}}-y^{\prime } x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

30.411

24694

3425

\begin{align*} y^{\prime }&=-y^{3} \\ y \left (1\right ) &= 3 \\ \end{align*}

30.428

24695

17231

\begin{align*} 2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

30.435

24696

6994

\begin{align*} y^{\prime } \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )&=\sin \left (x \right ) \\ \end{align*}

30.441

24697

12410

\begin{align*} 2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y&=0 \\ \end{align*}

30.457

24698

22602

\begin{align*} {y^{\prime }}^{2}+\left (3 y-2 x \right ) y^{\prime }-6 y&=0 \\ \end{align*}

30.517

24699

21872

\begin{align*} y&=y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

30.557

24700

19954

\begin{align*} y+\left (y^{n} a \,x^{2}-2 x \right ) y^{\prime }&=0 \\ \end{align*}

30.568