| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 24601 |
\begin{align*}
\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.748 |
|
| 24602 |
\begin{align*}
2 x +y^{2}-\cos \left (x +y\right )+\left (2 y x -\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.799 |
|
| 24603 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=r y^{\prime \prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.838 |
|
| 24604 |
\begin{align*}
x \left (2 a \,x^{n} y+b \right ) y^{\prime }&=-a \left (3 n +m \right ) x^{n} y^{2}-b \left (2 n +m \right ) y+A \,x^{m}+x \,x^{-n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.863 |
|
| 24605 |
\begin{align*}
{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.870 |
|
| 24606 |
\begin{align*}
\sqrt {t^{2}+T}&=T^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.889 |
|
| 24607 |
\begin{align*}
{y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
27.951 |
|
| 24608 |
\begin{align*}
\left (m +1\right ) x^{m} a \left (m \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
27.969 |
|
| 24609 |
\begin{align*}
y^{\prime }&=\sqrt {25-y^{2}} \\
y \left (-4\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.977 |
|
| 24610 |
\begin{align*}
\left (y x +1\right ) y-x \left (-y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.984 |
|
| 24611 |
\begin{align*}
y^{\prime }+\frac {x y}{-x^{2}+1}&=x \sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.033 |
|
| 24612 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.064 |
|
| 24613 |
\begin{align*}
\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }&=y^{2}+k \,{\mathrm e}^{\nu x} y-m^{2}+k m \,{\mathrm e}^{\nu x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.092 |
|
| 24614 |
\begin{align*}
y^{\prime }&=\frac {2 \sin \left (2 x \right )-\tan \left (y\right )}{x \sec \left (y\right )^{2}} \\
y \left (\pi \right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
28.106 |
|
| 24615 |
\begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.122 |
|
| 24616 |
\begin{align*}
\tan \left (y\right )-\tan \left (y\right )^{2} \cos \left (x \right )-x \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.130 |
|
| 24617 |
\begin{align*}
2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.137 |
|
| 24618 | \begin{align*}
y^{\prime \prime \prime }-y&=x^{n} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 28.137 |
|
| 24619 |
\begin{align*}
y^{\prime } x&=a \,x^{n}+b y+c y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.151 |
|
| 24620 |
\begin{align*}
y^{\prime }&=-4 \sin \left (x -y\right )-4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.224 |
|
| 24621 |
\begin{align*}
x^{\prime }&=-3 x-3 y+z \\
y^{\prime }&=2 y+2 z+29 \,{\mathrm e}^{-t} \\
z^{\prime }&=5 x+y+z+39 \,{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 2 \\
z \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.240 |
|
| 24622 |
\begin{align*}
2 x -2 y+\left (y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.251 |
|
| 24623 |
\begin{align*}
y^{\prime }&=-\sin \left (y\right )^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.319 |
|
| 24624 |
\begin{align*}
x y^{\prime } y-y^{2}+y x +x^{3}-2 x^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
28.378 |
|
| 24625 |
\begin{align*}
y^{\prime }&=\tan \left (y\right )+\frac {2 \cos \left (t \right )}{\cos \left (y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.393 |
|
| 24626 |
\begin{align*}
y^{\prime } x +a \,x^{2} y^{2}+2 y&=b \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.418 |
|
| 24627 |
\begin{align*}
x&=y^{\prime } y+a {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.454 |
|
| 24628 |
\begin{align*}
x y^{2}&=y-y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.459 |
|
| 24629 |
\begin{align*}
y^{\prime }&=\frac {x -y+5}{2 x -y-3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.541 |
|
| 24630 |
\begin{align*}
y^{\prime }&=\frac {x^{2}}{y+x^{{3}/{2}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.606 |
|
| 24631 |
\begin{align*}
\left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
28.659 |
|
| 24632 |
\begin{align*}
y^{2} {\mathrm e}^{y x}+\cos \left (x \right )+\left ({\mathrm e}^{y x}+x y \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.667 |
|
| 24633 |
\begin{align*}
3 x -y-6+\left (x +y+2\right ) y^{\prime }&=0 \\
y \left (2\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.736 |
|
| 24634 |
\begin{align*}
y^{2}-2 x y^{\prime } y+x^{2} {y^{\prime }}^{2}-{y^{\prime }}^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.741 |
|
| 24635 |
\begin{align*}
5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{{1}/{5}} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
28.757 |
|
| 24636 |
\begin{align*}
x^{2} y^{\prime }&=3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.765 |
|
| 24637 |
\begin{align*}
y^{\prime }&=\frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \\
y \left (\pi \right ) &= \frac {1}{\pi } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.832 |
|
| 24638 | \begin{align*}
{y^{\prime }}^{2}-a y y^{\prime }-a x&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 28.836 |
|
| 24639 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
28.846 |
|
| 24640 |
\begin{align*}
-\left (c \,x^{2}+b x +a \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
28.851 |
|
| 24641 |
\begin{align*}
\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.859 |
|
| 24642 |
\begin{align*}
3 \sin \left (t \right )-\sin \left (3 t \right )&=\left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.892 |
|
| 24643 |
\begin{align*}
{y^{\prime }}^{3}+m {y^{\prime }}^{2}&=a \left (y+m x \right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
28.906 |
|
| 24644 |
\begin{align*}
1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
28.941 |
|
| 24645 |
\begin{align*}
t^{3} y^{\prime \prime }-2 t y^{\prime }+y&=t^{4} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
28.960 |
|
| 24646 |
\begin{align*}
\frac {1}{\sqrt {y^{2}+x^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {y^{2}+x^{2}}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
28.990 |
|
| 24647 |
\begin{align*}
y^{\prime }&=x^{3}+y^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
28.991 |
|
| 24648 |
\begin{align*}
\cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 \cos \left (x \right )^{3} y&=2 \cos \left (x \right )^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.075 |
|
| 24649 |
\begin{align*}
y^{\prime }-\frac {\sqrt {{| y \left (y-1\right ) \left (-1+a y\right )|}}}{\sqrt {{| x \left (x -1\right ) \left (a x -1\right )|}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.106 |
|
| 24650 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{y x -x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.151 |
|
| 24651 |
\begin{align*}
y^{\prime }&=y^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.214 |
|
| 24652 |
\begin{align*}
y^{\prime }&=\frac {x +y+1}{2+x}-{\mathrm e}^{\frac {x +y+1}{2+x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.241 |
|
| 24653 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
29.338 |
|
| 24654 |
\begin{align*}
y^{\prime }&=\frac {\left (3 x y^{2}+x +3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
29.341 |
|
| 24655 |
\begin{align*}
y^{\prime } y&=\left (\left (3-m \right ) x -1\right ) y-\left (m -1\right ) a x \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
29.354 |
|
| 24656 |
\begin{align*}
y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.458 |
|
| 24657 |
\begin{align*}
\left (-y+y^{\prime } x \right )^{2}&={y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
29.470 |
|
| 24658 | \begin{align*}
y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 29.482 |
|
| 24659 |
\begin{align*}
x {y^{\prime }}^{2}-a y y^{\prime }+b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.484 |
|
| 24660 |
\begin{align*}
y^{2} y^{\prime }&=x \left (-y+y^{\prime } x \right ) {\mathrm e}^{\frac {x}{y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.495 |
|
| 24661 |
\begin{align*}
-y+t y^{\prime }&=t y^{3} \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.561 |
|
| 24662 |
\begin{align*}
x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.619 |
|
| 24663 |
\begin{align*}
y^{\prime } \sqrt {y x}+x -y&=\sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.647 |
|
| 24664 |
\begin{align*}
y^{\prime } y-y&=a x +b \,x^{m} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
29.658 |
|
| 24665 |
\begin{align*}
a^{3} y^{\prime \prime \prime } y^{\prime \prime }&=\sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.674 |
|
| 24666 |
\begin{align*}
\left (x +y\right )^{2} y^{\prime }&=a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.674 |
|
| 24667 |
\begin{align*}
y^{\prime }&=\frac {y \ln \left (y\right )}{\sin \left (x \right )} \\
y \left (\frac {\pi }{2}\right ) &= {\mathrm e}^{{\mathrm e}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.682 |
|
| 24668 |
\begin{align*}
\left (t +x+2\right ) x^{\prime }+3 t -x-6&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.697 |
|
| 24669 |
\begin{align*}
y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
29.734 |
|
| 24670 |
\begin{align*}
{y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.757 |
|
| 24671 |
\begin{align*}
2 y a \,x^{3}-a \,x^{2} y^{\prime }+c {y^{\prime }}^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.809 |
|
| 24672 |
\begin{align*}
y^{\prime }&=y \sqrt {a +b y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.816 |
|
| 24673 |
\begin{align*}
y^{\prime } y+x&=a {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.817 |
|
| 24674 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
29.829 |
|
| 24675 |
\begin{align*}
\left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
29.905 |
|
| 24676 |
\begin{align*}
\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.906 |
|
| 24677 |
\begin{align*}
5 v-u +\left (3 v-7 u \right ) v^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
29.949 |
|
| 24678 | \begin{align*}
y^{\prime } x -2 y \cos \left (x \right )&={\mathrm e}^{x} \sin \left (x \right )^{3} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 29.964 |
|
| 24679 |
\begin{align*}
2 t y^{\prime }-y&=2 t y^{3} \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
30.071 |
|
| 24680 |
\begin{align*}
\left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+6 y y^{\prime \prime }-36 x {y^{\prime }}^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
30.095 |
|
| 24681 |
\begin{align*}
y^{\prime }&=\cos \left (t +y\right ) \\
y \left (t_{0} \right ) &= y_{0} \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
30.097 |
|
| 24682 |
\begin{align*}
x^{4} y^{\prime \prime }+2 x^{3} \left (x +1\right ) y^{\prime }+n^{2} y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
30.127 |
|
| 24683 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
30.182 |
|
| 24684 |
\begin{align*}
3+y+2 y^{2} \sin \left (x \right )^{2}+\left (x +2 y x -y \sin \left (2 x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
30.203 |
|
| 24685 |
\begin{align*}
y^{\prime }&=\frac {x^{2}-y^{2}}{3 x y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
30.240 |
|
| 24686 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
30.248 |
|
| 24687 |
\begin{align*}
-\left (c^{2} x^{4}+b^{2} x^{2}+a^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
30.299 |
|
| 24688 |
\begin{align*}
y^{\prime }&=-\frac {1+{\mathrm e}^{t y} y}{2 y+{\mathrm e}^{t y} t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
30.301 |
|
| 24689 |
\begin{align*}
y^{2}-x^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
30.306 |
|
| 24690 |
\begin{align*}
2 t \cos \left (y\right )+3 t^{2} y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
30.360 |
|
| 24691 |
\begin{align*}
\left (\sqrt {1+y^{2}}+a x \right ) y^{\prime }+\sqrt {x^{2}+1}+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
30.398 |
|
| 24692 |
\begin{align*}
\cos \left (x \right ) \cos \left (y\right )+\left (\cos \left (y\right ) \sin \left (x \right )-\sin \left (x \right ) \sin \left (y\right )+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
30.400 |
|
| 24693 |
\begin{align*}
y-x^{2} \sqrt {x^{2}-y^{2}}-y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
30.411 |
|
| 24694 |
\begin{align*}
y^{\prime }&=-y^{3} \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
30.428 |
|
| 24695 |
\begin{align*}
2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
30.435 |
|
| 24696 |
\begin{align*}
y^{\prime } \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
30.441 |
|
| 24697 |
\begin{align*}
2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
30.457 |
|
| 24698 | \begin{align*}
{y^{\prime }}^{2}+\left (3 y-2 x \right ) y^{\prime }-6 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 30.517 |
|
| 24699 |
\begin{align*}
y&=y^{\prime } x +\ln \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
30.557 |
|
| 24700 |
\begin{align*}
y+\left (y^{n} a \,x^{2}-2 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
30.568 |
|