| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 24501 |
\begin{align*}
y^{\prime }&=-\frac {x^{3} \left (\sqrt {a}\, x +\sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
25.451 |
|
| 24502 |
\begin{align*}
x \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.505 |
|
| 24503 |
\begin{align*}
\left (\sin \left (y\right )+y \cos \left (y\right )\right ) y^{\prime }-\left (2 \ln \left (x \right )+1\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.508 |
|
| 24504 |
\begin{align*}
2 x -2 y-8+\left (x -3 y-6\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.513 |
|
| 24505 |
\begin{align*}
x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
25.520 |
|
| 24506 |
\begin{align*}
\frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.569 |
|
| 24507 |
\begin{align*}
y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.577 |
|
| 24508 |
\begin{align*}
2 y+\left (1-x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
25.581 |
|
| 24509 |
\begin{align*}
y^{\prime }&=-\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \left (x \right ) y-f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
25.589 |
|
| 24510 |
\begin{align*}
x -2+4 \left (x +y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.605 |
|
| 24511 |
\begin{align*}
x +3 y-5-\left (x -y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.697 |
|
| 24512 |
\begin{align*}
x^{2} y^{\prime \prime }&=f \left (\frac {x y^{\prime }}{y}\right ) y \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
25.708 |
|
| 24513 |
\begin{align*}
y^{2}+2 x^{2} y+\left (2 x^{3}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
25.785 |
|
| 24514 |
\begin{align*}
y^{\prime }+3 y&={\mathrm e}^{i x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.819 |
|
| 24515 |
\begin{align*}
\frac {1}{{y^{\prime }}^{2}}+y^{\prime } x&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
25.825 |
|
| 24516 |
\begin{align*}
y^{\prime }&=-x \sqrt {1-y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.853 |
|
| 24517 |
\begin{align*}
1&=\frac {y}{1-y^{2} x^{2}}+\frac {x y^{\prime }}{1-y^{2} x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.913 |
|
| 24518 | \begin{align*}
y^{\prime \prime }&=c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 25.940 |
|
| 24519 |
\begin{align*}
x y^{3} y^{\prime }+y^{4}-x \sin \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
25.954 |
|
| 24520 |
\begin{align*}
\sin \left (x^{\prime }\right )+y^{3} x&=\sin \left (y \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
25.964 |
|
| 24521 |
\begin{align*}
x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
25.982 |
|
| 24522 |
\begin{align*}
y \cos \left (t \right )+\sin \left (t \right ) y^{\prime }&={\mathrm e}^{t} \\
y \left (1\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.003 |
|
| 24523 |
\begin{align*}
y^{\prime }&=\frac {2 x +y-4}{x -y+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.021 |
|
| 24524 |
\begin{align*}
x^{\prime }&=2 t \sqrt {x} \\
x \left (a \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.037 |
|
| 24525 |
\begin{align*}
y^{\prime } y-y&=A \,x^{2}-\frac {9}{625 A} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
26.084 |
|
| 24526 |
\begin{align*}
\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.090 |
|
| 24527 |
\begin{align*}
a \left (y^{\prime } x +2 y\right )&=x y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.100 |
|
| 24528 |
\begin{align*}
2+3 x -5 y+7 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.126 |
|
| 24529 |
\begin{align*}
4 y^{\prime \prime } x +4 y-\left (2+x \right ) y+l y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
26.161 |
|
| 24530 |
\begin{align*}
y^{2} \cos \left (x \right )-y+\left (x +y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.165 |
|
| 24531 |
\begin{align*}
x +3 y-4+\left (x +4 y-5\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.188 |
|
| 24532 |
\begin{align*}
-y+y^{\prime } x&=y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.202 |
|
| 24533 |
\begin{align*}
\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}}&=\frac {1}{2 \sqrt {x +1}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.218 |
|
| 24534 |
\begin{align*}
y^{\prime }&=x \sqrt {1-y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.237 |
|
| 24535 |
\begin{align*}
x^{\prime }&=-\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.258 |
|
| 24536 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \\
y \left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.294 |
|
| 24537 |
\begin{align*}
\theta ^{\prime }&=\frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \\
\theta \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
26.312 |
|
| 24538 | \begin{align*}
y^{\prime }&=3-\sin \left (y\right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 26.329 |
|
| 24539 |
\begin{align*}
\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.371 |
|
| 24540 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y^{2}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
26.372 |
|
| 24541 |
\begin{align*}
1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.373 |
|
| 24542 |
\begin{align*}
y^{\prime }&=\left (\lambda +a \sin \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \sin \left (\lambda x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.421 |
|
| 24543 |
\begin{align*}
y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.464 |
|
| 24544 |
\begin{align*}
x +y-4-\left (3 x -y-4\right ) y^{\prime }&=0 \\
y \left (4\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.469 |
|
| 24545 |
\begin{align*}
y^{\prime }&=\left (\lambda +a \cos \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \cos \left (\lambda x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.478 |
|
| 24546 |
\begin{align*}
x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.503 |
|
| 24547 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
26.522 |
|
| 24548 |
\begin{align*}
\sinh \left (x \right ) {y^{\prime }}^{2}+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.590 |
|
| 24549 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.592 |
|
| 24550 |
\begin{align*}
x^{\prime }+\frac {\left (2 t^{3}+\sin \left (t \right )+5\right ) x}{t^{12}+5}&=0 \\
x \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.614 |
|
| 24551 |
\begin{align*}
y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.625 |
|
| 24552 |
\begin{align*}
y^{\prime }+\frac {2 x \sin \left (y\right )+y^{3} {\mathrm e}^{x}}{\cos \left (y\right ) x^{2}+3 y^{2} {\mathrm e}^{x}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.637 |
|
| 24553 |
\begin{align*}
y^{\prime }&=-\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-1\right ) y}{x +1} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
26.657 |
|
| 24554 |
\begin{align*}
y^{\prime }&=\frac {2 x -y}{2 x +y} \\
y \left (2\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.700 |
|
| 24555 |
\begin{align*}
\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime }&=0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.733 |
|
| 24556 |
\begin{align*}
\left (3 \tan \left (x \right )-2 \cos \left (y\right )\right ) \sec \left (x \right )^{2}+\tan \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.752 |
|
| 24557 |
\begin{align*}
x +4 y+3-\left (2 x -y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.756 |
|
| 24558 | \begin{align*}
2 t^{2}-7 t y+5 y^{2}+t y y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 26.759 |
|
| 24559 |
\begin{align*}
\frac {y^{\prime } x +y}{1-y^{2} x^{2}}+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.764 |
|
| 24560 |
\begin{align*}
x \left (a +y\right ) y^{\prime }+b y+c x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
26.767 |
|
| 24561 |
\begin{align*}
y \cos \left (t \right )+\sin \left (t \right ) y^{\prime }&={\mathrm e}^{t} \\
y \left (1\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.772 |
|
| 24562 |
\begin{align*}
y^{\prime }&=\frac {-y x +\ln \left (x^{2}\right )}{x^{2}+x \,{\mathrm e}^{y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.784 |
|
| 24563 |
\begin{align*}
x^{\prime }&=\sqrt {1-x^{2}} \\
x \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.794 |
|
| 24564 |
\begin{align*}
y^{\prime \prime }+3 y&=0 \\
y \left (0\right ) &= -2 \\
y \left (1\right ) &= \left (1-3 \,{\mathrm e}^{3}\right ) {\mathrm e}^{-3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.830 |
|
| 24565 |
\begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.850 |
|
| 24566 |
\begin{align*}
2 x +3 y+2+\left (y-x \right ) y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.858 |
|
| 24567 |
\begin{align*}
2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
26.858 |
|
| 24568 |
\begin{align*}
x -y-1-2 \left (y-2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.865 |
|
| 24569 |
\begin{align*}
{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
26.871 |
|
| 24570 |
\begin{align*}
y^{\prime }-\sqrt {\frac {y^{3}+1}{x^{3}+1}}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
26.889 |
|
| 24571 |
\begin{align*}
x y {y^{\prime }}^{2}+\left (y x -1\right ) y^{\prime }&=y \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
26.915 |
|
| 24572 |
\begin{align*}
\left (5-x +6 y\right ) y^{\prime }&=3-x +4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.954 |
|
| 24573 |
\begin{align*}
x^{7} y y^{\prime }&=2 x^{2}+2+5 x^{3} y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
26.961 |
|
| 24574 |
\begin{align*}
3 x^{2}+6 x y^{2}+\left (6 x^{2}+4 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
26.973 |
|
| 24575 |
\begin{align*}
\left (5 x +y-7\right ) y^{\prime }&=3 x +3 y+3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
26.985 |
|
| 24576 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
26.987 |
|
| 24577 |
\begin{align*}
y^{\prime }&=\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}-\frac {g^{\prime }\left (x \right )}{f \left (x \right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
27.010 |
|
| 24578 | \begin{align*}
x^{2} y^{\prime \prime }+x \left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{3}+B \,x^{2}+C x +d \right ) y&=0 \\
\end{align*} | ✗ | ✓ | ✗ | ✗ | 27.056 |
|
| 24579 |
\begin{align*}
\left (19+9 x +2 y\right ) y^{\prime }+18-2 x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.111 |
|
| 24580 |
\begin{align*}
x -6 y+2+2 \left (x +2 y+2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.115 |
|
| 24581 |
\begin{align*}
\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.120 |
|
| 24582 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+\frac {y}{t}&=t \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
27.226 |
|
| 24583 |
\begin{align*}
x^{\prime }&=\frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.240 |
|
| 24584 |
\begin{align*}
a \,x^{2} y^{\prime }&=x^{2}+a x y+b^{2} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.248 |
|
| 24585 |
\begin{align*}
\left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right )&=0 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
27.299 |
|
| 24586 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
27.308 |
|
| 24587 |
\begin{align*}
y^{\prime }&=\sin \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.312 |
|
| 24588 |
\begin{align*}
y^{\prime } \left (\cos \left (y\right )-\sin \left (\alpha \right ) \sin \left (x \right )\right ) \cos \left (y\right )+\left (\cos \left (x \right )-\sin \left (\alpha \right ) \sin \left (y\right )\right ) \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.323 |
|
| 24589 |
\begin{align*}
x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.336 |
|
| 24590 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +3 y&=5 x^{2} \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.446 |
|
| 24591 |
\begin{align*}
y^{\prime } x -\sqrt {x^{2}-y^{2}}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.450 |
|
| 24592 |
\begin{align*}
x \left (x +2 y\right ) y^{\prime }+y \left (2 x -y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.512 |
|
| 24593 |
\begin{align*}
\cos \left (y\right ) \sin \left (2 x \right )+\left (\cos \left (y\right )^{2}-\cos \left (x \right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.518 |
|
| 24594 |
\begin{align*}
a y-\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
27.532 |
|
| 24595 |
\begin{align*}
x^{\prime \prime }+x+\frac {x^{2}}{3}&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
27.558 |
|
| 24596 |
\begin{align*}
x^{2}+2 y x +2 y^{2}+\left (x^{2}+4 y x +5 y^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.622 |
|
| 24597 |
\begin{align*}
y^{\prime \prime }+25 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
27.691 |
|
| 24598 | \begin{align*}
x^{\prime }&=\frac {t^{2}+x^{2}}{2 t x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 27.693 |
|
| 24599 |
\begin{align*}
y \left (1+a^{2}-2 a^{2} y^{2}\right )+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
27.697 |
|
| 24600 |
\begin{align*}
\left (x +2 y+1\right ) y^{\prime }+7+x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
27.732 |
|