| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 24001 |
\begin{align*}
x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}&=y^{2} x^{2}+x^{4} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
15.140 |
|
| 24002 |
\begin{align*}
y^{\prime }&=\frac {y+x^{2} \ln \left (x \right )^{3}+2 x^{2} \ln \left (x \right )^{2} y+x^{2} \ln \left (x \right ) y^{2}}{x \ln \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.141 |
|
| 24003 |
\begin{align*}
y^{\prime }&=\frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2+2 y^{2} {\mathrm e}^{-\frac {x^{2}}{2}}+2 y^{3} {\mathrm e}^{-\frac {3 x^{2}}{4}}\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.151 |
|
| 24004 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {4 x^{2}-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.155 |
|
| 24005 |
\begin{align*}
y^{\prime }&=\left (\pi +x +7 y\right )^{{7}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.158 |
|
| 24006 |
\begin{align*}
y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right )&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.167 |
|
| 24007 |
\begin{align*}
y&={y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.173 |
|
| 24008 |
\begin{align*}
x^{2} y^{\prime \prime }-2 n x \left (x +1\right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
15.199 |
|
| 24009 |
\begin{align*}
\left (2 x -2 y+5\right ) y^{\prime }&=x -y+3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.221 |
|
| 24010 |
\begin{align*}
t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.224 |
|
| 24011 |
\begin{align*}
{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.224 |
|
| 24012 |
\begin{align*}
y^{\prime }&=\frac {x +y+4}{x -y-6} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.247 |
|
| 24013 |
\begin{align*}
y^{\prime \prime }+\left (3 a +y\right ) y^{\prime }-y^{3}+a y^{2}+2 a^{2} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
15.290 |
|
| 24014 |
\begin{align*}
\left (x -4\right ) y^{4}-x^{3} \left (y^{2}-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.300 |
|
| 24015 |
\begin{align*}
y^{\prime }&=\lambda \sin \left (\lambda x \right ) y^{2}+\lambda \sin \left (\lambda x \right )^{3} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
15.309 |
|
| 24016 |
\begin{align*}
y^{\prime }&=\frac {\left (1+y\right ) \left (\left (y-\ln \left (1+y\right )-\ln \left (x \right )\right ) x +1\right )}{y x} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
15.316 |
|
| 24017 |
\begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.331 |
|
| 24018 | \begin{align*}
y^{\prime }&=-\frac {4 x +3 y}{2 x +y} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 15.332 |
|
| 24019 |
\begin{align*}
y^{\prime }&=\frac {y^{3} {\mathrm e}^{-2 x}}{{\mathrm e}^{-x} y+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.345 |
|
| 24020 |
\begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.353 |
|
| 24021 |
\begin{align*}
y^{\prime }&=y \left (y^{2}+y \,{\mathrm e}^{-x^{2}}+{\mathrm e}^{-2 x^{2}}\right ) {\mathrm e}^{2 x^{2}} x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.355 |
|
| 24022 |
\begin{align*}
2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime }&=y^{3} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
15.367 |
|
| 24023 |
\begin{align*}
y {y^{\prime }}^{2}-{\mathrm e}^{2 x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.367 |
|
| 24024 |
\begin{align*}
y x -\left (x +2 y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.372 |
|
| 24025 |
\begin{align*}
y^{\prime } y-y&=6 x +\frac {A}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.374 |
|
| 24026 |
\begin{align*}
x^{n} y^{n +1}+a y+\left (x^{n +1} y^{n}+b x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.375 |
|
| 24027 |
\begin{align*}
y^{\prime }&=-\frac {a b y-b c +b^{2} x +b a \sqrt {x}-a^{2}}{a \left (a y-c +b x +a \sqrt {x}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.394 |
|
| 24028 |
\begin{align*}
\left (x -y\right ) y^{\prime }&=y \left (2 y x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.436 |
|
| 24029 |
\begin{align*}
y^{\prime }&=\frac {\textit {\_F1} \left (y^{2}-2 \ln \left (x \right )\right )}{\sqrt {y^{2}}\, x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
15.437 |
|
| 24030 |
\begin{align*}
\left (6 x -4 y+1\right ) y^{\prime }&=3 x -2 y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.437 |
|
| 24031 |
\begin{align*}
x^{\prime }&=-3 x+4 y-9 z \\
y^{\prime }&=6 x-y \\
z^{\prime }&=10 x+4 y+3 z \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.443 |
|
| 24032 |
\begin{align*}
\left (5 x -2 y+7\right ) y^{\prime }&=10 x -4 y+6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.460 |
|
| 24033 |
\begin{align*}
\left (y^{\prime } x +y+2 x \right )^{2}-4 y x -4 x^{2}-4 a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.488 |
|
| 24034 |
\begin{align*}
y^{\prime }&=\frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.575 |
|
| 24035 |
\begin{align*}
4 y y^{\prime \prime }&=12 y^{2}+3 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.582 |
|
| 24036 |
\begin{align*}
y^{\prime }&=\left (\frac {\ln \left (y-1\right ) y}{\left (1-y\right ) \ln \left (x \right ) x}-\frac {\ln \left (y-1\right )}{\left (1-y\right ) \ln \left (x \right ) x}-f \left (x \right )\right ) \left (1-y\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
15.591 |
|
| 24037 | \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=-3 x -\frac {3}{x} \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= -6 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 15.591 |
|
| 24038 |
\begin{align*}
2 x +y-3+\left (x +y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.631 |
|
| 24039 |
\begin{align*}
y x&=y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.637 |
|
| 24040 |
\begin{align*}
x +\sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= \pi \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
15.654 |
|
| 24041 |
\begin{align*}
\left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) \left (c \,x^{n}+d \right ) y^{\prime }+n \left (-a d +b c \right ) x^{n -1} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
15.669 |
|
| 24042 |
\begin{align*}
2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y&=\frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \\
y \left (\infty \right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
15.670 |
|
| 24043 |
\begin{align*}
y^{\prime }&=\frac {\left (-2 y^{{3}/{2}}+3 \,{\mathrm e}^{x}\right )^{2} {\mathrm e}^{x}}{4 \sqrt {y}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
15.691 |
|
| 24044 |
\begin{align*}
y^{\prime }&=a +b \sin \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.710 |
|
| 24045 |
\begin{align*}
y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}&=0 \\
y \left (0\right ) &= -\frac {\sqrt {3}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.712 |
|
| 24046 |
\begin{align*}
x \left (6 x^{2}+14 y^{2}\right )+y \left (13 x^{2}+30 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.720 |
|
| 24047 |
\begin{align*}
y^{\prime }&=-\frac {y^{2} \left (x^{2} y-2 x -2 y x +y\right )}{2 \left (-2+y x -2 y\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.730 |
|
| 24048 |
\begin{align*}
2 y x -\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.737 |
|
| 24049 |
\begin{align*}
y^{\prime }&=1+\frac {2 y}{x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.741 |
|
| 24050 |
\begin{align*}
\left (3+9 x +21 y\right ) y^{\prime }&=45+7 x -5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.753 |
|
| 24051 |
\begin{align*}
k&=\frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{{3}/{2}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.774 |
|
| 24052 |
\begin{align*}
x \left (-2 y-x +1\right ) y^{\prime }+\left (2 x +y+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.810 |
|
| 24053 |
\begin{align*}
y^{\prime }&=\lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \operatorname {arccot}\left (x \right )^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.819 |
|
| 24054 |
\begin{align*}
y^{\prime }&=\frac {y \left (y^{2} x^{7}+x^{4} y+x -3\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.837 |
|
| 24055 |
\begin{align*}
y^{\prime }&=-\frac {a x}{2}-\frac {b}{2}+x \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.853 |
|
| 24056 | \begin{align*}
\left (a_{0} +a_{1} \sin \left (x \right )^{2}\right ) y^{\prime }+a_{2} x \left (a_{3} +a_{1} \sin \left (x \right )^{2}\right )+a_{1} y \sin \left (2 x \right )&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 15.935 |
|
| 24057 |
\begin{align*}
y^{\prime }&=\frac {b \,x^{3}+c^{2} \sqrt {a}-2 c b \,x^{2} \sqrt {a}+2 c y^{2} a^{{3}/{2}}+b^{2} x^{4} \sqrt {a}-2 y^{2} a^{{3}/{2}} b \,x^{2}+a^{{5}/{2}} y^{4}}{a \,x^{2} y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
15.935 |
|
| 24058 |
\begin{align*}
x \left (2 x^{3}+y\right ) y^{\prime }&=\left (2 x^{3}-y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.941 |
|
| 24059 |
\begin{align*}
y^{\prime } \sin \left (2 x \right )+\sin \left (2 y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.974 |
|
| 24060 |
\begin{align*}
\frac {y x +1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.999 |
|
| 24061 |
\begin{align*}
y^{\prime }&=\frac {1+y}{x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.003 |
|
| 24062 |
\begin{align*}
x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.013 |
|
| 24063 |
\begin{align*}
y^{\prime }&=\frac {i x \left (i-2 \sqrt {-x^{2}+4 \ln \left (a \right )+4 \ln \left (y\right )}\right ) y}{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.043 |
|
| 24064 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+y^{3} b&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
16.086 |
|
| 24065 |
\begin{align*}
\left (a \sin \left (x \right )^{2}+b \right ) y^{\prime }+a y \sin \left (2 x \right )+A x \left (a \sin \left (x \right )^{2}+c \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.121 |
|
| 24066 |
\begin{align*}
y^{\prime }&=\frac {-\ln \left (x \right )+2 \ln \left (2 x \right ) x y+\ln \left (2 x \right )+\ln \left (2 x \right ) y^{2}+\ln \left (2 x \right ) x^{2}}{\ln \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.125 |
|
| 24067 |
\begin{align*}
y^{\prime }&=\frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-x^{2} {\mathrm e}^{\frac {x +1}{x -1}}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.130 |
|
| 24068 |
\begin{align*}
x \left (x -2 y+1\right ) y^{\prime }+\left (1-2 x +y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.155 |
|
| 24069 |
\begin{align*}
y \sin \left (x \right )+y \cos \left (x \right ) x +\left (x \sin \left (x \right )+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.170 |
|
| 24070 |
\begin{align*}
y^{\prime }&=1+y+y^{2} \cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
16.188 |
|
| 24071 |
\begin{align*}
y^{\prime }&=-\frac {x}{2}-\frac {a}{2}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.203 |
|
| 24072 |
\begin{align*}
2 y^{2}-4 x +5&=\left (4-2 y+4 y x \right ) y^{\prime } \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
16.220 |
|
| 24073 |
\begin{align*}
2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }&=x^{2} y-y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.223 |
|
| 24074 |
\begin{align*}
y^{\prime }&=-\frac {a x}{2}-\frac {b}{2}+x^{2} \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.227 |
|
| 24075 |
\begin{align*}
y^{\prime }&=\frac {-a b y+b^{2}+a b +b^{2} x -b a \sqrt {x}-a^{2}}{a \left (-a y+b +a +b x -a \sqrt {x}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.274 |
|
| 24076 | \begin{align*}
y^{\prime }&=\frac {y \left (\ln \left (y\right )-1+\ln \left (x \right )+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}\right )}{x} \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 16.295 |
|
| 24077 |
\begin{align*}
y^{\prime }-\frac {\sqrt {y^{2}-1}}{\sqrt {x^{2}-1}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.304 |
|
| 24078 |
\begin{align*}
\left (b x +a \right )^{2} y^{\prime }+c y^{2}+\left (b x +a \right ) y^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.308 |
|
| 24079 |
\begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=x_{3} \\
x_{3}^{\prime }&=-a x_{3}-b x_{2}-c x_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.309 |
|
| 24080 |
\begin{align*}
2 y^{3}-x^{3}+3 y^{2} y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.356 |
|
| 24081 |
\begin{align*}
y^{\prime }&=\frac {x +y+1}{x +y+2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.361 |
|
| 24082 |
\begin{align*}
y^{\prime }&=y \ln \left ({| y|}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.367 |
|
| 24083 |
\begin{align*}
y x +\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.385 |
|
| 24084 |
\begin{align*}
y^{\prime }&=\frac {2 x +3 y+1}{3 x -2 y-5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.410 |
|
| 24085 |
\begin{align*}
y^{\prime }&=\frac {y}{\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )+1} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.423 |
|
| 24086 |
\begin{align*}
\left (x +y\right ) y^{\prime }+3 x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.425 |
|
| 24087 |
\begin{align*}
\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.471 |
|
| 24088 |
\begin{align*}
\left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.484 |
|
| 24089 |
\begin{align*}
\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +k \right ) y^{\prime }+\left (d -2 a \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.487 |
|
| 24090 |
\begin{align*}
6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.532 |
|
| 24091 |
\begin{align*}
y&=t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.548 |
|
| 24092 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime } y-3 a y^{2}-4 a^{2} y-b&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.553 |
|
| 24093 |
\begin{align*}
\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.611 |
|
| 24094 |
\begin{align*}
{y^{\prime }}^{2}&=f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
16.619 |
|
| 24095 |
\begin{align*}
\left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.660 |
|
| 24096 | \begin{align*}
\sqrt {x^{2}-1}\, y^{\prime }-\sqrt {y^{2}-1}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 16.737 |
|
| 24097 |
\begin{align*}
y^{\prime }&=\frac {y^{3}-2 x^{3}}{x y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.738 |
|
| 24098 |
\begin{align*}
y^{\prime }&=\frac {-x \sin \left (2 y\right )-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{4}+x^{4}}{2 x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.752 |
|
| 24099 |
\begin{align*}
\left (a x +b \right ) y^{\prime \prime }+s \left (c x +d \right ) y^{\prime }-s^{2} \left (\left (a +c \right ) x +b +d \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.760 |
|
| 24100 |
\begin{align*}
\operatorname {a2} \,x^{2} y^{\prime \prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x \right ) y^{\prime }+\left (\operatorname {a0} \,x^{2}+\operatorname {b0} x +\operatorname {c0} \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.794 |
|