| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 23901 |
\begin{align*}
{y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
13.945 |
|
| 23902 |
\begin{align*}
y \cos \left (x \right )-2 \sin \left (y\right )&=\left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
13.948 |
|
| 23903 |
\begin{align*}
9 y^{\prime }&=-x^{m} \left (a \,x^{1-m}+b \right )^{2 \lambda +1} y^{3}-x^{-2 m} \left (9 a +2+9 b m \,x^{m -1}\right ) \left (a \,x^{1-m}+b \right )^{-\lambda -2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
13.955 |
|
| 23904 |
\begin{align*}
y^{\prime }&=-\frac {y}{x}+y^{{1}/{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
13.977 |
|
| 23905 |
\begin{align*}
y^{\prime } x&=y \left (1-x \tan \left (x \right )\right )+x^{2} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.019 |
|
| 23906 |
\begin{align*}
y^{\prime }&=-\frac {-y x -y+x^{5} \sqrt {y^{2}+x^{2}}-x^{4} \sqrt {y^{2}+x^{2}}\, y}{x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.030 |
|
| 23907 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+a -x^{2}+2 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.034 |
|
| 23908 |
\begin{align*}
y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.037 |
|
| 23909 |
\begin{align*}
\sec \left (x -2 y\right )^{2}+\cos \left (x +3 y\right )-3 \sin \left (3 x \right )+\left (3 \cos \left (x +3 y\right )-2 \sec \left (x -2 y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
14.068 |
|
| 23910 |
\begin{align*}
1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.086 |
|
| 23911 |
\begin{align*}
y^{\prime }&=\frac {y \left (-1+\ln \left (x \left (x +1\right )\right ) y x^{4}-\ln \left (x \left (x +1\right )\right ) x^{3}\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.088 |
|
| 23912 |
\begin{align*}
2 x y^{\prime } y&=y^{2}-x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.102 |
|
| 23913 |
\begin{align*}
x -y \ln \left (y\right )+y \ln \left (x \right )+x \left (\ln \left (y\right )-\ln \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.118 |
|
| 23914 |
\begin{align*}
y+\left (x +x^{3} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.124 |
|
| 23915 |
\begin{align*}
y^{\prime \prime } x +\left (b \,x^{2} a +b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.127 |
|
| 23916 |
\begin{align*}
\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.158 |
|
| 23917 |
\begin{align*}
y^{\prime } y^{\prime \prime }+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.166 |
|
| 23918 | \begin{align*}
y^{\prime }&=\frac {y x +3 x -2 y+6}{y x -3 x -2 y+6} \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 14.168 |
|
| 23919 |
\begin{align*}
y^{\prime }&=\left (-{\mathrm e}^{x}+y\right )^{2}+{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.172 |
|
| 23920 |
\begin{align*}
y^{\prime }&=\frac {\left (y-\operatorname {Si}\left (x \right )\right )^{2}+\sin \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.185 |
|
| 23921 |
\begin{align*}
3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.187 |
|
| 23922 |
\begin{align*}
y^{\prime }&=\frac {t +y+1}{t -y+3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.211 |
|
| 23923 |
\begin{align*}
y^{\prime }&=\frac {-2 \cos \left (y\right )+x^{3} \cos \left (2 y\right ) \ln \left (x \right )+x^{3} \ln \left (x \right )}{2 \sin \left (y\right ) \ln \left (x \right ) x} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
14.217 |
|
| 23924 |
\begin{align*}
2 x^{5} y^{\prime }&=y \left (3 x^{4}+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.217 |
|
| 23925 |
\begin{align*}
x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.228 |
|
| 23926 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y \ln \left (\frac {1}{y}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.245 |
|
| 23927 |
\begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.247 |
|
| 23928 |
\begin{align*}
\left (\sin \left (\lambda x \right ) a +b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \sin \left (\lambda x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.253 |
|
| 23929 |
\begin{align*}
y^{\prime \prime }&=a \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.285 |
|
| 23930 |
\begin{align*}
\left (x +\sqrt {y^{2}+x^{2}}\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.289 |
|
| 23931 |
\begin{align*}
x \left (x^{2}+2 y^{2}\right ) y^{\prime }&=\left (2 x^{2}+3 y^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.290 |
|
| 23932 |
\begin{align*}
\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 y \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.296 |
|
| 23933 |
\begin{align*}
y \left (2 x^{2}-y x +y^{2}\right )-x^{2} \left (2 x -y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.306 |
|
| 23934 |
\begin{align*}
y^{\prime }&=\frac {-2 \cos \left (y\right )+x^{2} \cos \left (2 y\right ) \ln \left (x \right )+\ln \left (x \right ) x^{2}}{2 \sin \left (y\right ) \ln \left (x \right ) x} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
14.309 |
|
| 23935 |
\begin{align*}
x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.348 |
|
| 23936 |
\begin{align*}
{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.354 |
|
| 23937 |
\begin{align*}
y^{\prime } y+a \left (2 b x +1\right ) {\mathrm e}^{b x} y&=-a^{2} b \,x^{2} {\mathrm e}^{2 b x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.368 |
|
| 23938 | \begin{align*}
3 y x +\left (3 x^{2}+y^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 14.392 |
|
| 23939 |
\begin{align*}
x +2+\left (2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.403 |
|
| 23940 |
\begin{align*}
y^{\prime }&=\frac {y x +x +y^{2}}{\left (x -1\right ) \left (x +y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.404 |
|
| 23941 |
\begin{align*}
y^{\prime }&=-\frac {x}{y} \\
y \left (0\right ) &= a_{0} \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
14.425 |
|
| 23942 |
\begin{align*}
x^{{3}/{2}} y^{\prime \prime }&=f \left (\frac {y}{\sqrt {x}}\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.433 |
|
| 23943 |
\begin{align*}
9 x -4 y+4-\left (1+2 x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.437 |
|
| 23944 |
\begin{align*}
x \left (2 y x +1\right ) y^{\prime }+\left (2+3 y x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.454 |
|
| 23945 |
\begin{align*}
\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.463 |
|
| 23946 |
\begin{align*}
y^{\prime }&=\frac {x}{2}+\frac {1}{2}+x^{2} \sqrt {x^{2}+2 x +1-4 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.470 |
|
| 23947 |
\begin{align*}
3 x^{2} y^{4}+2 y x +\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.476 |
|
| 23948 |
\begin{align*}
y^{\prime }&=\frac {y+x^{2} \sqrt {y^{2}+x^{2}}}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.518 |
|
| 23949 |
\begin{align*}
\sec \left (x \right )^{2} y+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.525 |
|
| 23950 |
\begin{align*}
y^{\prime } x&=\sqrt {16 x^{2}-y^{2}}+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.535 |
|
| 23951 |
\begin{align*}
y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
14.558 |
|
| 23952 |
\begin{align*}
y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
14.566 |
|
| 23953 |
\begin{align*}
5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.579 |
|
| 23954 |
\begin{align*}
y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.596 |
|
| 23955 |
\begin{align*}
x \left (x y^{2}+1\right ) y^{\prime }&=\left (2-3 x y^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.599 |
|
| 23956 |
\begin{align*}
y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+{\mathrm e}^{-\frac {y}{x}} x +x \right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.612 |
|
| 23957 |
\begin{align*}
\left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (x +a \right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.630 |
|
| 23958 | \begin{align*}
y^{\prime }&=\frac {1+y}{2+x}+{\mathrm e}^{\frac {1+y}{2+x}} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 14.630 |
|
| 23959 |
\begin{align*}
y^{2} \csc \left (x \right )^{2}+6 y x -2&=\left (2 \cot \left (x \right ) y-3 x^{2}\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.631 |
|
| 23960 |
\begin{align*}
\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.634 |
|
| 23961 |
\begin{align*}
y^{\prime }&=\frac {-4 y x +x^{3}+2 x^{2}-4 x -8}{-8 y+2 x^{2}+4 x -8} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.636 |
|
| 23962 |
\begin{align*}
y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.674 |
|
| 23963 |
\begin{align*}
y^{\prime }&=\frac {1}{\sin \left (x \right )}+\textit {\_F1} \left (y-\ln \left (\sin \left (x \right )\right )+\ln \left (\cos \left (x \right )+1\right )\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.690 |
|
| 23964 |
\begin{align*}
y \sqrt {y^{2}+x^{2}}-x \left (x +\sqrt {y^{2}+x^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.703 |
|
| 23965 |
\begin{align*}
y^{\prime }-y+y^{2} {\mathrm e}^{x}+5 \,{\mathrm e}^{-x}&=0 \\
y \left (0\right ) &= \eta \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.710 |
|
| 23966 |
\begin{align*}
2 x -y+1+\left (2 y-x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.711 |
|
| 23967 |
\begin{align*}
y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.718 |
|
| 23968 |
\begin{align*}
y^{\prime }&=\frac {x^{3} y+x^{3}+x y^{2}+y^{3}}{\left (x -1\right ) x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.750 |
|
| 23969 |
\begin{align*}
y^{\prime }&=\frac {\left (2 x +2+y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.767 |
|
| 23970 |
\begin{align*}
y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.784 |
|
| 23971 |
\begin{align*}
y^{\prime }&=-\frac {-y x -y+x^{2} \sqrt {y^{2}+x^{2}}-x \sqrt {y^{2}+x^{2}}\, y}{x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.795 |
|
| 23972 |
\begin{align*}
y^{\prime }&=\frac {-4 y x -x^{3}+4 x^{2}-4 x +8}{8 y+2 x^{2}-8 x +8} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.811 |
|
| 23973 |
\begin{align*}
\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.815 |
|
| 23974 |
\begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.832 |
|
| 23975 |
\begin{align*}
y^{\prime }&=\frac {-8 y x -x^{3}+2 x^{2}-8 x +32}{32 y+4 x^{2}-8 x +32} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.852 |
|
| 23976 |
\begin{align*}
y^{\prime }&=\frac {x +y-1}{x -y-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.857 |
|
| 23977 | \begin{align*}
\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=2\). | ✓ | ✓ | ✓ | ✓ | 14.872 |
|
| 23978 |
\begin{align*}
y&=y^{\prime } x +\frac {1}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.874 |
|
| 23979 |
\begin{align*}
x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
14.890 |
|
| 23980 |
\begin{align*}
\left (y^{2}-1\right ) y^{\prime }&=4 x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.904 |
|
| 23981 |
\begin{align*}
y^{\prime } x -4 \sqrt {y^{2}-x^{2}}&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.924 |
|
| 23982 |
\begin{align*}
x^{2} y+2 y^{3}-\left (2 x^{3}+3 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.931 |
|
| 23983 |
\begin{align*}
y^{\prime }&=\frac {y^{3} {\mathrm e}^{-\frac {4 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.932 |
|
| 23984 |
\begin{align*}
x \left (x^{3}+y\right ) y^{\prime }&=\left (x^{3}-y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.937 |
|
| 23985 |
\begin{align*}
x +y-\left (x -y+2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.944 |
|
| 23986 |
\begin{align*}
y^{\prime }&=-\frac {x}{4}+\frac {1}{4}+x \sqrt {x^{2}-2 x +1+8 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
14.977 |
|
| 23987 |
\begin{align*}
y^{\prime }&=-\frac {x}{4}+\frac {1}{4}+x^{2} \sqrt {x^{2}-2 x +1+8 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.981 |
|
| 23988 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) x y^{\prime }-y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
14.987 |
|
| 23989 |
\begin{align*}
\frac {2 y x +1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.991 |
|
| 23990 |
\begin{align*}
x^{2}+a_{1} x y+a_{2} y^{2}+\left (x^{2}+b_{1} x y+b_{2} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
14.997 |
|
| 23991 |
\begin{align*}
y^{\prime }&=-y^{3}+\frac {y^{2}}{\sqrt {a x +b}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.069 |
|
| 23992 |
\begin{align*}
a_{1} x +k y+c_{1} +\left (k x +b_{2} y+c_{2} \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.091 |
|
| 23993 |
\begin{align*}
\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.096 |
|
| 23994 |
\begin{align*}
y^{\prime }&=\alpha \left (A -y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.107 |
|
| 23995 |
\begin{align*}
x -y+2+\left (x +y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.109 |
|
| 23996 |
\begin{align*}
y^{\prime }&=\left (1+4 x +9 y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.109 |
|
| 23997 | \begin{align*}
y^{\prime }&=-\frac {x}{2}-\frac {a}{2}+x \sqrt {x^{2}+2 a x +a^{2}+4 y} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 15.113 |
|
| 23998 |
\begin{align*}
2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
15.125 |
|
| 23999 |
\begin{align*}
y^{\prime }&=\frac {-\sin \left (\frac {y}{x}\right ) y+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
15.133 |
|
| 24000 |
\begin{align*}
y^{\prime }&=\left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
15.136 |
|