| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 22301 |
\begin{align*}
x y \left (b \,x^{2}+a \right ) y^{\prime }&=A +B y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.936 |
|
| 22302 |
\begin{align*}
\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.936 |
|
| 22303 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
5.936 |
|
| 22304 |
\begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.937 |
|
| 22305 |
\begin{align*}
x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.938 |
|
| 22306 |
\begin{align*}
y-x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.941 |
|
| 22307 |
\begin{align*}
x^{2} y y^{\prime }&=\left (y^{2}-1\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.943 |
|
| 22308 |
\begin{align*}
3 y+2 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.943 |
|
| 22309 |
\begin{align*}
\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.944 |
|
| 22310 |
\begin{align*}
y^{\prime } y&=-x \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.944 |
|
| 22311 |
\begin{align*}
y^{\prime }&=\left (1+y^{2}\right ) \tan \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.947 |
|
| 22312 |
\begin{align*}
y \left (y^{3}-x \right )+x \left (y^{3}+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.949 |
|
| 22313 |
\begin{align*}
3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.951 |
|
| 22314 |
\begin{align*}
y^{\prime }&=\frac {y x +y^{2}}{x^{2}} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.954 |
|
| 22315 |
\begin{align*}
{y^{\prime }}^{3}-a x y^{\prime }+x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.957 |
|
| 22316 |
\begin{align*}
x \left (x -2 y\right ) y^{\prime }+y \left (2 x -y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.958 |
|
| 22317 |
\begin{align*}
y^{\prime }&=\frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.960 |
|
| 22318 | \begin{align*}
y^{\prime }&=\frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2 F \left (y \,{\mathrm e}^{-\frac {x^{2}}{4}}\right )\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 5.960 |
|
| 22319 |
\begin{align*}
y^{\prime }&=\frac {-x y^{2}+x^{3}-x -y^{6}+3 x^{2} y^{4}-3 x^{4} y^{2}+x^{6}}{\left (-y^{2}+x^{2}-1\right ) y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.967 |
|
| 22320 |
\begin{align*}
2 \left (x +1\right ) y^{\prime }+2 y+\left (x +1\right )^{4} y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.968 |
|
| 22321 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=x y \left (1+a y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.970 |
|
| 22322 |
\begin{align*}
y^{\left (8\right )}+y&=x^{15} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.972 |
|
| 22323 |
\begin{align*}
\left (1+x^{2}-y^{2}\right ) y-x \left (-y^{2}+x^{2}-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.972 |
|
| 22324 |
\begin{align*}
\left (2 x +3 y+2\right ) y^{\prime }&=1-2 x -3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.974 |
|
| 22325 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.975 |
|
| 22326 |
\begin{align*}
x +y+\left (x +2 y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.979 |
|
| 22327 |
\begin{align*}
\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.980 |
|
| 22328 |
\begin{align*}
x^{2}+y^{2}-x^{2} y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.983 |
|
| 22329 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{x^{2}-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.984 |
|
| 22330 |
\begin{align*}
y^{\prime }&=\frac {x}{y^{2} \sqrt {x^{2}+1}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.988 |
|
| 22331 |
\begin{align*}
x^{2}+y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.992 |
|
| 22332 |
\begin{align*}
y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 \mu x}+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 \mu x}\right )-\mu \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
5.994 |
|
| 22333 |
\begin{align*}
\left (x +1\right ) y^{\prime }&=a y+b x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.997 |
|
| 22334 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=x \left (x^{2}+1\right )-y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.998 |
|
| 22335 |
\begin{align*}
x^{\prime }&=t^{2} {\mathrm e}^{-x} \\
x \left (0\right ) &= \ln \left (2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.002 |
|
| 22336 |
\begin{align*}
x +y+\left (x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.004 |
|
| 22337 | \begin{align*}
y^{\prime }&=x^{3} y^{3}-y x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 6.005 |
|
| 22338 |
\begin{align*}
y^{\prime }&=-\frac {t}{y} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.007 |
|
| 22339 |
\begin{align*}
\left (x +2 y\right ) y^{\prime }&=1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.010 |
|
| 22340 |
\begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.010 |
|
| 22341 |
\begin{align*}
x^{2} y^{\prime }&=a +b \,x^{2} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.015 |
|
| 22342 |
\begin{align*}
y^{\prime }&=\frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \\
y \left (0\right ) &= 100 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.016 |
|
| 22343 |
\begin{align*}
y^{\prime }&=\left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.017 |
|
| 22344 |
\begin{align*}
y^{\prime \prime } y^{\prime \prime \prime }&=a \sqrt {1+b^{2} {y^{\prime \prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.018 |
|
| 22345 |
\begin{align*}
\left (\cos \left (x \right )^{2}+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.024 |
|
| 22346 |
\begin{align*}
y^{\prime }&=x \sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.026 |
|
| 22347 |
\begin{align*}
y^{\prime } x +2 y&=a \,x^{2 k} y^{k} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.027 |
|
| 22348 |
\begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.035 |
|
| 22349 |
\begin{align*}
x \left (2 a y+b x \right ) y^{\prime }&=a \left (2-m \right ) y^{2}+b \left (1-m \right ) x y+c \,x^{2}+A \,x^{m +2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.036 |
|
| 22350 |
\begin{align*}
t^{3}+y^{3}-t y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.036 |
|
| 22351 |
\begin{align*}
\frac {1}{\left (-y x +1\right )^{2}}+\left (y^{2}+\frac {x^{2}}{\left (-y x +1\right )^{2}}\right ) y^{\prime }&=0 \\
y \left (4\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
6.041 |
|
| 22352 |
\begin{align*}
\left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.042 |
|
| 22353 |
\begin{align*}
\sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y&=\sqrt {x +a}-\sqrt {x +b} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.043 |
|
| 22354 |
\begin{align*}
y^{\prime }&=\cos \left (\frac {\pi y}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.044 |
|
| 22355 |
\begin{align*}
2 t +3 x+\left (2+x\right ) x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.046 |
|
| 22356 | \begin{align*}
y^{\prime }&=\frac {x -y}{x +y} \\
y \left (0\right ) &= 3 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 6.046 |
|
| 22357 |
\begin{align*}
y^{\prime }&=x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.047 |
|
| 22358 |
\begin{align*}
2 y x +\left (y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.049 |
|
| 22359 |
\begin{align*}
y^{\prime }&=x \left (1-{\mathrm e}^{2 y-x^{2}}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.049 |
|
| 22360 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y&=4 \,{\mathrm e}^{x} \\
y \left (-\infty \right ) &= 0 \\
y^{\prime }\left (-1\right ) &= -{\mathrm e}^{-1} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
6.050 |
|
| 22361 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.052 |
|
| 22362 |
\begin{align*}
\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime }&=\left (1+y^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.054 |
|
| 22363 |
\begin{align*}
\left (2 \sqrt {y x}-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.059 |
|
| 22364 |
\begin{align*}
\cos \left (\frac {t}{t +y}\right )+{\mathrm e}^{\frac {2 y}{t}} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.062 |
|
| 22365 |
\begin{align*}
{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.063 |
|
| 22366 |
\begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.066 |
|
| 22367 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y x -x \left (x^{2}+1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.069 |
|
| 22368 |
\begin{align*}
y^{\prime } x&=y \ln \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.070 |
|
| 22369 |
\begin{align*}
x +y+\left (2 x +2 y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.072 |
|
| 22370 |
\begin{align*}
x +y+\left (x -y-2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.073 |
|
| 22371 |
\begin{align*}
y^{\prime }+\left (b x +a \right ) y&=f \left (x \right ) \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.074 |
|
| 22372 |
\begin{align*}
2 x y^{\prime } y&=4 x^{2} \left (2 x +1\right )+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.075 |
|
| 22373 |
\begin{align*}
y-t +\left (t +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.075 |
|
| 22374 |
\begin{align*}
\left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.083 |
|
| 22375 | \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 6.083 |
|
| 22376 |
\begin{align*}
x^{2} y^{\prime }+y x +\sqrt {y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.095 |
|
| 22377 |
\begin{align*}
2 x -y-y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.095 |
|
| 22378 |
\begin{align*}
y^{\prime \prime } x -\left (a +b \right ) \left (x +1\right ) y^{\prime }+a b x y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
6.098 |
|
| 22379 |
\begin{align*}
{\mathrm e}^{3 x} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\frac {2 y}{x^{2}+4}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
6.101 |
|
| 22380 |
\begin{align*}
y^{2}+2 x^{2} y+\left (2 x^{3}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.102 |
|
| 22381 |
\begin{align*}
y^{\prime }-x y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.106 |
|
| 22382 |
\begin{align*}
y^{\prime }&=\frac {2 x^{3} y+x^{6}+y^{2} x^{2}+y^{3}}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.108 |
|
| 22383 |
\begin{align*}
a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
6.111 |
|
| 22384 |
\begin{align*}
y \left (3+y\right ) y^{\prime }&=x \left (3+2 y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.112 |
|
| 22385 |
\begin{align*}
y x -y^{2}-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.113 |
|
| 22386 |
\begin{align*}
\left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }&=3 x y^{2}-x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.113 |
|
| 22387 |
\begin{align*}
\cos \left (2 y\right )-3 y^{2} x^{2}+\left (\cos \left (2 y\right )-2 x \sin \left (2 y\right )-2 x^{3} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.118 |
|
| 22388 |
\begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
6.118 |
|
| 22389 |
\begin{align*}
y^{\prime } x&=y \left (2 y x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.119 |
|
| 22390 |
\begin{align*}
y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
6.122 |
|
| 22391 |
\begin{align*}
y^{\prime }-5 y&=3 \,{\mathrm e}^{x}-2 x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.129 |
|
| 22392 |
\begin{align*}
{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.132 |
|
| 22393 |
\begin{align*}
y^{\prime }&=\frac {x +a y}{a x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.136 |
|
| 22394 | \begin{align*}
x y^{2} \left (y^{\prime } x +3 y\right )-2 y+y^{\prime } x&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 6.145 |
|
| 22395 |
\begin{align*}
3 y+y^{\prime }&=\sqrt {y}\, \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.145 |
|
| 22396 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
6.153 |
|
| 22397 |
\begin{align*}
y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.156 |
|
| 22398 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=a \,x^{2 k} {y^{\prime }}^{k} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.157 |
|
| 22399 |
\begin{align*}
y^{\prime }&=\frac {2 y x +3 y}{x^{2}+2 y^{2}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
6.158 |
|
| 22400 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (1\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.160 |
|