| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 20601 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=y^{3} \sin \left (x \right )^{3} \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.581 |
|
| 20602 |
\begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.581 |
|
| 20603 |
\begin{align*}
\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-3 a^{2} x y y^{\prime }-a^{2} x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.582 |
|
| 20604 |
\begin{align*}
\cos \left (y\right ) \sin \left (x \right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.582 |
|
| 20605 |
\begin{align*}
y+\ln \left (t \right ) y^{\prime }&=\cot \left (t \right ) \\
y \left (2\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.582 |
|
| 20606 |
\begin{align*}
f^{\prime } x -f&=\frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.583 |
|
| 20607 |
\begin{align*}
x +y+\left (y-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.583 |
|
| 20608 |
\begin{align*}
y^{\prime }&=\frac {\cot \left (y\right )}{t} \\
y \left (1\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.584 |
|
| 20609 |
\begin{align*}
\sin \left (x \right ) \sin \left (y\right )+y^{\prime } \cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.586 |
|
| 20610 |
\begin{align*}
x \left (1-x \right ) y^{\prime }&=a +2 \left (-x +2\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.586 |
|
| 20611 |
\begin{align*}
y^{\prime } x +2 y&=3 x \\
y \left (1\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.587 |
|
| 20612 |
\begin{align*}
y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.587 |
|
| 20613 |
\begin{align*}
y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime }&=0 \\
y \left (0\right ) &= \pi \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.588 |
|
| 20614 |
\begin{align*}
\left (10 x^{2} y^{3}-3 y^{2}-2\right ) y^{\prime }+5 y^{4} x +x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.590 |
|
| 20615 |
\begin{align*}
R q^{\prime }+\frac {q}{c}&=E \\
q \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.590 |
|
| 20616 |
\begin{align*}
y^{2}+\left (y x +\tan \left (y x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.591 |
|
| 20617 |
\begin{align*}
1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.591 |
|
| 20618 | \begin{align*}
y^{\prime } x +f \left (x \right ) \left (y^{2}-x^{2}\right )-y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 3.594 |
|
| 20619 |
\begin{align*}
y^{\prime }&=\frac {1+2 x -y}{x +2 y-3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.595 |
|
| 20620 |
\begin{align*}
y^{\prime } x +x^{a} y^{2}+\frac {\left (a -b \right ) y}{2}+x^{b}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.596 |
|
| 20621 |
\begin{align*}
y x -1+\left (x^{2}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.596 |
|
| 20622 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+2 y^{2}}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.600 |
|
| 20623 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=8 x^{3} \sin \left (x^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.601 |
|
| 20624 |
\begin{align*}
x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.602 |
|
| 20625 |
\begin{align*}
x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.604 |
|
| 20626 |
\begin{align*}
3 y y^{\prime \prime }&=36 y^{2}+2 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.605 |
|
| 20627 |
\begin{align*}
y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.605 |
|
| 20628 |
\begin{align*}
y^{\prime } x&=y \left (1+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.606 |
|
| 20629 |
\begin{align*}
3+2 x +\left (-2+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.611 |
|
| 20630 |
\begin{align*}
x y^{\prime } y&=\left (1+y\right ) \left (1-x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.612 |
|
| 20631 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y^{2}&=-1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.612 |
|
| 20632 |
\begin{align*}
2 x \left (x^{2}-1\right ) y^{\prime }+2 \left (x^{2}-1\right ) y^{2}-\left (3 x^{2}-5\right ) y+x^{2}-3&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.615 |
|
| 20633 |
\begin{align*}
\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k x +d \right ) y^{\prime }-k y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.618 |
|
| 20634 |
\begin{align*}
{y^{\prime }}^{2}-2 y^{\prime } y&=y^{2} \left ({\mathrm e}^{2 x}-1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.618 |
|
| 20635 |
\begin{align*}
y+\frac {y^{3}}{3}+\frac {x^{2}}{2}+\frac {\left (x y^{2}+x \right ) y^{\prime }}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.618 |
|
| 20636 |
\begin{align*}
y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{2 x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.619 |
|
| 20637 | \begin{align*}
k \,{\mathrm e}^{2 v}-u -2 \,{\mathrm e}^{2 v} \left ({\mathrm e}^{2 v}+k u \right ) v^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 3.619 |
|
| 20638 |
\begin{align*}
y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.622 |
|
| 20639 |
\begin{align*}
y^{\prime }&=2 \csc \left (2 x \right ) \left (\sin \left (x \right )^{3}+y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.623 |
|
| 20640 |
\begin{align*}
\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.624 |
|
| 20641 |
\begin{align*}
x^{2} \left (y^{\prime }+y^{2}\right )-7 y x +7&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.625 |
|
| 20642 |
\begin{align*}
x^{\prime \prime }&=x-x^{3} \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.625 |
|
| 20643 |
\begin{align*}
y^{\prime } y+f \left (x \right )&=g \left (x \right ) y \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.628 |
|
| 20644 |
\begin{align*}
\left (-x^{3}+1\right ) y^{\prime }+x^{2} y&=x^{2} \left (-x^{3}+1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.631 |
|
| 20645 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -4\right )+\operatorname {Heaviside}\left (t -6\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
3.631 |
|
| 20646 |
\begin{align*}
y^{\prime \prime }-5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.631 |
|
| 20647 |
\begin{align*}
y^{\prime }&=\frac {x^{3}+3 a \,x^{2}+3 a^{2} x +a^{3}+x y^{2}+a y^{2}+y^{3}}{\left (x +a \right )^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.634 |
|
| 20648 |
\begin{align*}
y^{\prime }&=t y^{2}+2 y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.634 |
|
| 20649 |
\begin{align*}
x y^{\prime } y&=y^{2}+9 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.635 |
|
| 20650 |
\begin{align*}
\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.636 |
|
| 20651 |
\begin{align*}
y^{\prime }&=\frac {4 t -3 y}{t -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.636 |
|
| 20652 |
\begin{align*}
y^{\prime } x +y \left (1-x y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.637 |
|
| 20653 |
\begin{align*}
x y \left (1-y\right )-2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.638 |
|
| 20654 |
\begin{align*}
t y+y^{\prime }&=t y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.640 |
|
| 20655 |
\begin{align*}
x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.641 |
|
| 20656 |
\begin{align*}
x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right )&=-1 \\
y \left (\infty \right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.641 |
|
| 20657 | \begin{align*}
y^{\prime }&=\sqrt {y^{2}-1} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 3.643 |
|
| 20658 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) y-\sin \left (2 x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.645 |
|
| 20659 |
\begin{align*}
\sin \left (x \right ) y^{\prime }-y \cos \left (x \right )&=0 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.645 |
|
| 20660 |
\begin{align*}
y^{\prime }&=-\frac {y^{2}+x^{2}}{2 y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.645 |
|
| 20661 |
\begin{align*}
y^{\prime } x -y^{2} \ln \left (x \right )+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.647 |
|
| 20662 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x}+\lambda \right ) y^{\prime }-a \lambda \,{\mathrm e}^{2 \lambda x} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.647 |
|
| 20663 |
\begin{align*}
y^{\prime }&=t^{2} y^{3}+y^{3} \\
y \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.648 |
|
| 20664 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.648 |
|
| 20665 |
\begin{align*}
y^{\prime }&=x^{2} \left (a \,x^{3}+b y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.649 |
|
| 20666 |
\begin{align*}
-y^{\prime }+\left (2 \cot \left (x \right )+\csc \left (x \right )\right ) y^{\prime \prime }+y^{\prime \prime \prime }&=\cot \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.649 |
|
| 20667 |
\begin{align*}
\left (a \,x^{2}+b x +c \right ) \left (-y+y^{\prime } x \right )-y^{2}+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.649 |
|
| 20668 |
\begin{align*}
y^{\prime } y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.650 |
|
| 20669 |
\begin{align*}
2 x^{2} y y^{\prime }-y^{2}-x^{2} {\mathrm e}^{x -\frac {1}{x}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.650 |
|
| 20670 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.653 |
|
| 20671 |
\begin{align*}
y^{\prime }&=y^{2}-4 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.654 |
|
| 20672 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.654 |
|
| 20673 |
\begin{align*}
y^{\prime }&=\frac {y+{\mathrm e}^{-\frac {y}{x}} x}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.656 |
|
| 20674 |
\begin{align*}
y-y^{\prime } x&=y^{\prime } y+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.656 |
|
| 20675 |
\begin{align*}
y^{\prime }&=\frac {x}{-y+F \left (y^{2}+x^{2}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.657 |
|
| 20676 | \begin{align*}
y^{\prime }&=\frac {\left (3+2 y\right )^{2}}{\left (5+4 x \right )^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.658 |
|
| 20677 |
\begin{align*}
a y^{3} x +b y^{2}+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.662 |
|
| 20678 |
\begin{align*}
y^{\prime }&=y^{2}-4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.664 |
|
| 20679 |
\begin{align*}
y+\left (4 x -y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.664 |
|
| 20680 |
\begin{align*}
y^{\prime }&=\frac {y}{x}-\frac {x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.664 |
|
| 20681 |
\begin{align*}
\frac {y}{\left (x +y\right )^{2}}-1+\left (1-\frac {x}{\left (x +y\right )^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.665 |
|
| 20682 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.668 |
|
| 20683 |
\begin{align*}
x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.668 |
|
| 20684 |
\begin{align*}
t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.668 |
|
| 20685 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x} y \\
y \left (0\right ) &= 2 \,{\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.670 |
|
| 20686 |
\begin{align*}
y^{\prime } x +\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.670 |
|
| 20687 |
\begin{align*}
y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.671 |
|
| 20688 |
\begin{align*}
y^{\prime } y+x^{3}+y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.671 |
|
| 20689 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.671 |
|
| 20690 |
\begin{align*}
y^{\prime }&=y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.672 |
|
| 20691 |
\begin{align*}
y^{\prime }&=\frac {x +3 y}{-3 x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.673 |
|
| 20692 |
\begin{align*}
y^{\prime }-x \left (2+x \right ) y^{3}-\left (x +3\right ) y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.673 |
|
| 20693 |
\begin{align*}
y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.673 |
|
| 20694 |
\begin{align*}
r^{\prime } \left (\sin \left (\theta \right )-m \cos \left (\theta \right )\right )+r \left (\cos \left (\theta \right )+m \sin \left (\theta \right )\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.673 |
|
| 20695 |
\begin{align*}
\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.674 |
|
| 20696 | \begin{align*}
y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.674 |
|
| 20697 |
\begin{align*}
y-x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.675 |
|
| 20698 |
\begin{align*}
4 {y^{\prime }}^{2}-2 \left (y+3 y^{\prime } x \right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.678 |
|
| 20699 |
\begin{align*}
y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y&=\tan \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.678 |
|
| 20700 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.678 |
|