| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 20501 |
\begin{align*}
y \,{\mathrm e}^{t}+t \,{\mathrm e}^{t} y+\left ({\mathrm e}^{t} t +2\right ) y^{\prime }&=0 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.500 |
|
| 20502 |
\begin{align*}
y^{\prime }+y^{3} \sin \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.500 |
|
| 20503 |
\begin{align*}
y^{\prime }&=\frac {2 x}{1+2 y} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.500 |
|
| 20504 |
\begin{align*}
\left (-y x +1\right ) y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.501 |
|
| 20505 |
\begin{align*}
y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.502 |
|
| 20506 |
\begin{align*}
y^{\prime } x +\left (x +1\right ) y&=\sin \left (2 x \right ) {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.503 |
|
| 20507 |
\begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.503 |
|
| 20508 |
\begin{align*}
y^{\prime }&=\frac {t +y}{t -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.504 |
|
| 20509 |
\begin{align*}
w^{\prime }&=\left (w^{2}-2\right ) \arctan \left (w\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.504 |
|
| 20510 |
\begin{align*}
y^{\prime }&=x^{2} {\mathrm e}^{-3 y} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.505 |
|
| 20511 |
\begin{align*}
y+\cos \left (x \right )+\left (x +\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.505 |
|
| 20512 |
\begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.507 |
|
| 20513 |
\begin{align*}
\left (3 x -y\right ) y^{\prime }&=3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.508 |
|
| 20514 |
\begin{align*}
x {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.508 |
|
| 20515 |
\begin{align*}
y^{\prime } x +y \ln \left (x \right )&=y \ln \left (y\right )+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.508 |
|
| 20516 |
\begin{align*}
{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.509 |
|
| 20517 |
\begin{align*}
a y \left (y-1\right ) y^{\prime \prime }+\left (b y+c \right ) {y^{\prime }}^{2}+h \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.509 |
|
| 20518 | \begin{align*}
x \left (a +y\right )^{2} y^{\prime }&=b y^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.510 |
|
| 20519 |
\begin{align*}
x&=y+a \ln \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.510 |
|
| 20520 |
\begin{align*}
x \sqrt {1+y^{2}}&=y y^{\prime } \sqrt {x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.510 |
|
| 20521 |
\begin{align*}
\left (8+5 x -12 y\right ) y^{\prime }&=3+2 x -5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.513 |
|
| 20522 |
\begin{align*}
y^{\prime } x -y^{2} \ln \left (x \right )+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.513 |
|
| 20523 |
\begin{align*}
y^{\prime }+y \cos \left (x \right )&=y^{3} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.514 |
|
| 20524 |
\begin{align*}
x^{n} y^{\prime }&=x^{n -1} \left (a \,x^{2 n}+n y-b y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.514 |
|
| 20525 |
\begin{align*}
t y^{\prime }&=y+\sqrt {t^{2}+y^{2}} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.515 |
|
| 20526 |
\begin{align*}
L i^{\prime }+R i&=E_{0} \\
i \left (0\right ) &= i_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.515 |
|
| 20527 |
\begin{align*}
\left (x -1\right ) \left (y^{2}-y+1\right )&=\left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.516 |
|
| 20528 |
\begin{align*}
2 y^{\prime }&=y^{3} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.517 |
|
| 20529 |
\begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.518 |
|
| 20530 |
\begin{align*}
y^{3} y^{\prime \prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.519 |
|
| 20531 |
\begin{align*}
\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.520 |
|
| 20532 |
\begin{align*}
y^{\prime }-\frac {y-x f \left (x^{2}+a y^{2}\right )}{x +a y f \left (x^{2}+a y^{2}\right )}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.521 |
|
| 20533 |
\begin{align*}
x^{2}+y^{2}+1-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.521 |
|
| 20534 |
\begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.522 |
|
| 20535 |
\begin{align*}
y^{\prime }-x y^{2}&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.523 |
|
| 20536 |
\begin{align*}
\left (2 x y^{3}+y x +x^{2}\right ) y^{\prime }-y x +y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.524 |
|
| 20537 | \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (1\right ) &= {\frac {5}{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.524 |
|
| 20538 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=\frac {4 x^{2} \cos \left (x \right )}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.526 |
|
| 20539 |
\begin{align*}
\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.527 |
|
| 20540 |
\begin{align*}
x^{\prime }&=k x-x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.527 |
|
| 20541 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.527 |
|
| 20542 |
\begin{align*}
x^{2} y^{\prime }&=1-x^{2}+y^{2}-y^{2} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.529 |
|
| 20543 |
\begin{align*}
\left (x -a \right ) \left (-b +x \right ) \left (y^{\prime }-\sqrt {y}\right )&=2 \left (b -a \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.529 |
|
| 20544 |
\begin{align*}
y^{\prime } \left (4 x^{3}+a_{1} x +a_{0} \right )^{{2}/{3}}+\left (a_{0} +a_{1} y+4 y^{3}\right )^{{2}/{3}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.529 |
|
| 20545 |
\begin{align*}
\operatorname {f5} y^{2}+\operatorname {f4} y y^{\prime }+\operatorname {f3} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
3.529 |
|
| 20546 |
\begin{align*}
y^{\prime }&=4 t^{2}-t y^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.529 |
|
| 20547 |
\begin{align*}
3 \left (y^{2}-x^{2}\right ) y^{\prime }+2 y^{3}-6 \left (x +1\right ) x y-3 \,{\mathrm e}^{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.530 |
|
| 20548 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.530 |
|
| 20549 |
\begin{align*}
-y+y^{\prime } x&=x^{2} \\
y \left (2\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.531 |
|
| 20550 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.531 |
|
| 20551 |
\begin{align*}
y^{\prime }&=\frac {y+F \left (\frac {y}{x}\right ) x^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.533 |
|
| 20552 |
\begin{align*}
x^{\prime }+2 x&=t^{2}+4 t +7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.534 |
|
| 20553 |
\begin{align*}
y^{\prime }&=\frac {x +3 y}{x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.535 |
|
| 20554 |
\begin{align*}
\left (y x +1\right ) y+x \left (1+y x +y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.535 |
|
| 20555 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.535 |
|
| 20556 | \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.535 |
|
| 20557 |
\begin{align*}
y^{\prime }-\tan \left (x \right ) y&=\frac {1}{\cos \left (x \right )^{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.536 |
|
| 20558 |
\begin{align*}
y^{\prime }&=\left (1-y\right ) \cos \left (x \right ) \\
y \left (\pi \right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.537 |
|
| 20559 |
\begin{align*}
\left (x +a \right ) y^{\prime }&=b +c y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.539 |
|
| 20560 |
\begin{align*}
-3 y-\left (x -2\right ) {\mathrm e}^{x}+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.539 |
|
| 20561 |
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.539 |
|
| 20562 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (-1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.539 |
|
| 20563 |
\begin{align*}
\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.541 |
|
| 20564 |
\begin{align*}
y \,{\mathrm e}^{y x}-\frac {1}{y}+\left (x \,{\mathrm e}^{y x}+\frac {x}{y^{2}}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.542 |
|
| 20565 |
\begin{align*}
3 y^{2} y^{\prime }-x y^{3}&={\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.543 |
|
| 20566 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.547 |
|
| 20567 |
\begin{align*}
2 y-3 t +t y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.548 |
|
| 20568 |
\begin{align*}
y^{\prime } y&=-x \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.549 |
|
| 20569 |
\begin{align*}
y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.550 |
|
| 20570 |
\begin{align*}
y^{\prime }-y \sin \left (x \right )&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.550 |
|
| 20571 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.552 |
|
| 20572 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.552 |
|
| 20573 |
\begin{align*}
x^{4} y^{\prime }+x^{3} y+\csc \left (y x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.554 |
|
| 20574 |
\begin{align*}
s^{\prime }+2 s&=s t^{2} \\
s \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.554 |
|
| 20575 | \begin{align*}
x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.556 |
|
| 20576 |
\begin{align*}
\left (x +2 y\right ) y^{\prime }+2 x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.556 |
|
| 20577 |
\begin{align*}
y^{\prime \prime }&=y^{3}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.559 |
|
| 20578 |
\begin{align*}
y^{\prime } x&={\mathrm e}^{\frac {y}{x}} x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.560 |
|
| 20579 |
\begin{align*}
6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime }&=0 \\
y \left (\frac {1}{2}\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.560 |
|
| 20580 |
\begin{align*}
\cos \left (x \right ) y^{\prime }+y \sin \left (x \right )&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.560 |
|
| 20581 |
\begin{align*}
y^{\prime }&=-\frac {y}{t +1}+2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.561 |
|
| 20582 |
\begin{align*}
\left (x +a \right ) y^{\prime }&=-b -c y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.562 |
|
| 20583 |
\begin{align*}
y^{\prime }&=\frac {-x +F \left (y^{2}+x^{2}\right )}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.562 |
|
| 20584 |
\begin{align*}
y^{\prime } x&=\sqrt {1-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.562 |
|
| 20585 |
\begin{align*}
y^{2}+y x +1+\left (x^{2}+y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.562 |
|
| 20586 |
\begin{align*}
x {y^{\prime }}^{2}+a y y^{\prime }+b x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.563 |
|
| 20587 |
\begin{align*}
y^{\prime } x&=2 y \left (y-1\right ) \\
y \left (\frac {1}{2}\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.565 |
|
| 20588 |
\begin{align*}
3 x^{2} {\mathrm e}^{x^{3}}+{\mathrm e}^{2 y}+\left (2 x \,{\mathrm e}^{2 y}-3\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.565 |
|
| 20589 |
\begin{align*}
y^{\prime }&=\frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.566 |
|
| 20590 |
\begin{align*}
4 x y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.567 |
|
| 20591 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {9 x^{2}+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.567 |
|
| 20592 |
\begin{align*}
\frac {y^{\prime }}{2}&=\sqrt {1+y}\, \cos \left (x \right ) \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.567 |
|
| 20593 |
\begin{align*}
x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.568 |
|
| 20594 | \begin{align*}
y^{\prime } x +\left (2 x^{2}+1\right ) y&=x^{3} {\mathrm e}^{-x^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 3.569 |
|
| 20595 |
\begin{align*}
y^{\prime \prime }&=a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.573 |
|
| 20596 |
\begin{align*}
y^{\prime }&=\frac {x -y}{x +y+2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.574 |
|
| 20597 |
\begin{align*}
y^{\prime }+\frac {6 y}{x}&=\frac {3 y^{{2}/{3}} \cos \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.575 |
|
| 20598 |
\begin{align*}
y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\
y \left (1\right ) &= -{\frac {1}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.576 |
|
| 20599 |
\begin{align*}
y^{\prime }&=\left (x +y-4\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.576 |
|
| 20600 |
\begin{align*}
y^{\prime }&=\frac {2+y}{2 t +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.580 |
|