2.2.40 Problems 3901 to 4000

Table 2.93: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

3901

\begin{align*} x_{1}^{\prime }&=-4 x_{1} \\ x_{2}^{\prime }&=2 x_{1}+5 x_{2}-9 x_{3} \\ x_{3}^{\prime }&=5 x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.793

3902

\begin{align*} x_{1}^{\prime }&=2 x_{1}-2 x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}-4 x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{1}+2 x_{2}-3 x_{3} \\ \end{align*}

system_of_ODEs

0.638

3903

\begin{align*} x_{1}^{\prime }&=2 x_{1}-4 x_{2}+3 x_{3} \\ x_{2}^{\prime }&=-9 x_{1}-3 x_{2}-9 x_{3} \\ x_{3}^{\prime }&=4 x_{1}+4 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.585

3904

\begin{align*} x_{1}^{\prime }&=-17 x_{1}-42 x_{3} \\ x_{2}^{\prime }&=-7 x_{1}+4 x_{2}-14 x_{3} \\ x_{3}^{\prime }&=7 x_{1}+18 x_{3} \\ \end{align*}

system_of_ODEs

0.480

3905

\begin{align*} x_{1}^{\prime }&=-16 x_{1}+30 x_{2}-18 x_{3} \\ x_{2}^{\prime }&=-8 x_{1}+8 x_{2}+16 x_{3} \\ x_{3}^{\prime }&=8 x_{1}-15 x_{2}+9 x_{3} \\ \end{align*}

system_of_ODEs

1.654

3906

\begin{align*} x_{1}^{\prime }&=-7 x_{1}-6 x_{2}-7 x_{3} \\ x_{2}^{\prime }&=-3 x_{1}-3 x_{2}-3 x_{3} \\ x_{3}^{\prime }&=7 x_{1}+6 x_{2}+7 x_{3} \\ \end{align*}

system_of_ODEs

0.482

3907

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2}-2 x_{3} \\ x_{2}^{\prime }&=x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}+6 x_{3} \\ \end{align*}

system_of_ODEs

0.470

3908

\begin{align*} x_{1}^{\prime }&=-x_{1}-4 x_{2}-2 x_{3} \\ x_{2}^{\prime }&=-4 x_{1}-5 x_{2}-6 x_{3} \\ x_{3}^{\prime }&=4 x_{1}+8 x_{2}+7 x_{3} \\ \end{align*}

system_of_ODEs

0.817

3909

\begin{align*} x_{1}^{\prime }&=7 x_{1}-2 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=4 x_{2}-x_{3} \\ x_{3}^{\prime }&=-x_{1}+x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.465

3910

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-x_{2}-2 x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{3} \\ x_{3}^{\prime }&=x_{1} \\ \end{align*}

system_of_ODEs

0.463

3911

\begin{align*} x_{1}^{\prime }&=-2 x_{1}-x_{3} \\ x_{2}^{\prime }&=-x_{2} \\ x_{3}^{\prime }&=x_{1} \\ \end{align*}

system_of_ODEs

0.398

3912

\begin{align*} x_{1}^{\prime }&=2 x_{1}+13 x_{2} \\ x_{2}^{\prime }&=-x_{1}-2 x_{2} \\ x_{3}^{\prime }&=2 x_{3}+4 x_{4} \\ x_{4}^{\prime }&=2 x_{4} \\ \end{align*}

system_of_ODEs

0.818

3913

\begin{align*} x_{1}^{\prime }&=7 x_{1}-x_{4} \\ x_{2}^{\prime }&=6 x_{2} \\ x_{3}^{\prime }&=-x_{3} \\ x_{4}^{\prime }&=2 x_{1}+5 x_{4} \\ \end{align*}

system_of_ODEs

0.942

3914

\begin{align*} x_{1}^{\prime }&=-6 x_{1}+x_{2}+1 \\ x_{2}^{\prime }&=6 x_{1}-5 x_{2}+{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.566

3915

\begin{align*} x_{1}^{\prime }&=9 x_{1}-2 x_{2}+9 t \\ x_{2}^{\prime }&=5 x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.547

3916

\begin{align*} x_{1}^{\prime }&=10 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+2 x_{2}+\frac {{\mathrm e}^{6 t}}{t} \\ \end{align*}

system_of_ODEs

0.471

3917

\begin{align*} x_{1}^{\prime }&=2 x_{1}-4 x_{2}+3 x_{3}+{\mathrm e}^{6 t} \\ x_{2}^{\prime }&=-9 x_{1}-3 x_{2}-9 x_{3}+1 \\ x_{3}^{\prime }&=4 x_{1}+4 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

1.095

3918

\begin{align*} x_{1}^{\prime }&=2 x_{1}-2 x_{2}+x_{3}+t \\ x_{2}^{\prime }&=x_{1}-4 x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{1}+2 x_{2}-3 x_{3}+1 \\ \end{align*}

system_of_ODEs

1.016

3919

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=8 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.323

3920

\begin{align*} x_{1}^{\prime }&=-6 x_{2} \\ x_{2}^{\prime }&=x_{1}-5 x_{2} \\ \end{align*}

system_of_ODEs

0.312

3921

\begin{align*} x_{1}^{\prime }&=5 x_{1}+9 x_{2} \\ x_{2}^{\prime }&=-2 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.456

3922

\begin{align*} x_{1}^{\prime }&=-4 x_{1} \\ x_{2}^{\prime }&=-4 x_{2} \\ \end{align*}

system_of_ODEs

0.200

3923

\begin{align*} x_{1}^{\prime }&=7 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=x_{1}+4 x_{2} \\ \end{align*}

system_of_ODEs

0.307

3924

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-7 x_{2} \\ \end{align*}

system_of_ODEs

0.431

3925

\begin{align*} x_{1}^{\prime }&=-2 x_{1}-x_{2} \\ x_{2}^{\prime }&=x_{1}-4 x_{2} \\ \end{align*}

system_of_ODEs

0.256

3926

\begin{align*} x_{1}^{\prime }&=10 x_{1}-8 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\ \end{align*}

system_of_ODEs

0.271

3927

\begin{align*} -2 y+y^{\prime }&=6 \,{\mathrm e}^{5 t} \\ y \left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.173

3928

\begin{align*} y+y^{\prime }&=8 \,{\mathrm e}^{3 t} \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.088

3929

\begin{align*} 3 y+y^{\prime }&=2 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.115

3930

\begin{align*} y^{\prime }+2 y&=4 t \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.115

3931

\begin{align*} -y+y^{\prime }&=6 \cos \left (t \right ) \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.148

3932

\begin{align*} -y+y^{\prime }&=5 \sin \left (2 t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.147

3933

\begin{align*} y+y^{\prime }&=5 \,{\mathrm e}^{t} \sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.158

3934

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.108

3935

\begin{align*} y^{\prime \prime }+4 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.121

3936

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.120

3937

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=36 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 12 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.109

3938

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=10 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.132

3939

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=4 \,{\mathrm e}^{3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.127

3940

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=30 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_y]]

0.128

3941

\begin{align*} y^{\prime \prime }-y&=12 \,{\mathrm e}^{2 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.130

3942

\begin{align*} y^{\prime \prime }+4 y&=10 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.148

3943

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=12-6 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.144

3944

\begin{align*} y^{\prime \prime }-y&=6 \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.145

3945

\begin{align*} y^{\prime \prime }-9 y&=13 \sin \left (2 t \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.146

3946

\begin{align*} y^{\prime \prime }-y&=8 \sin \left (t \right )-6 \cos \left (t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.156

3947

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=10 \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.158

3948

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=20 \sin \left (2 t \right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.158

3949

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=20 \sin \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.154

3950

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=3 \cos \left (t \right )+\sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.161

3951

\begin{align*} y^{\prime \prime }+4 y&=9 \sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.155

3952

\begin{align*} y^{\prime \prime }+y&=6 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.148

3953

\begin{align*} y^{\prime \prime }+9 y&=7 \sin \left (4 t \right )+14 \cos \left (4 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.184

3954

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= A \\ y^{\prime }\left (0\right ) &= B \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.095

3955

\begin{align*} y^{\prime }+2 y&=2 \operatorname {Heaviside}\left (-1+t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.391

3956

\begin{align*} -2 y+y^{\prime }&=\operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.431

3957

\begin{align*} -y+y^{\prime }&=4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.604

3958

\begin{align*} y^{\prime }+2 y&=\operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \\ y \left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.542

3959

\begin{align*} 3 y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.635

3960

\begin{align*} y^{\prime }-3 y&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.750

3961

\begin{align*} y^{\prime }-3 y&=-10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \\ y \left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

6.280

3962

\begin{align*} y^{\prime \prime }-y&=\operatorname {Heaviside}\left (-1+t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.485

3963

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=1-3 \operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.832

3964

\begin{align*} y^{\prime \prime }-4 y&=\operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.043

3965

\begin{align*} y^{\prime \prime }+y&=t -\operatorname {Heaviside}\left (-1+t \right ) \left (-1+t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.434

3966

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=-10 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \cos \left (t +\frac {\pi }{4}\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.849

3967

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=30 \operatorname {Heaviside}\left (-1+t \right ) {\mathrm e}^{1-t} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.652

3968

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=5 \operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.372

3969

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=2 \sin \left (t \right )+\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (1+\cos \left (t \right )\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.241

3970

\begin{align*} -y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.473

3971

\begin{align*} -y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

0.858

3972

\begin{align*} y+y^{\prime }&=\delta \left (t -5\right ) \\ y \left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.323

3973

\begin{align*} -2 y+y^{\prime }&=\delta \left (t -2\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.308

3974

\begin{align*} y^{\prime }+4 y&=3 \delta \left (-1+t \right ) \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.360

3975

\begin{align*} y^{\prime }-5 y&=2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.440

3976

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.652

3977

\begin{align*} y^{\prime \prime }-4 y&=\delta \left (t -3\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

3978

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\delta \left (t -\frac {\pi }{2}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.553

3979

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=\delta \left (t -\frac {\pi }{4}\right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.767

3980

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=\delta \left (t -2\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.816

3981

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=\delta \left (t -\frac {\pi }{4}\right ) \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.637

3982

\begin{align*} y^{\prime \prime }+9 y&=15 \sin \left (2 t \right )+\delta \left (t -\frac {\pi }{6}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.512

3983

\begin{align*} y^{\prime \prime }+16 y&=4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.694

3984

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.159

3985

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.207

3986

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_erf]

0.281

3987

\begin{align*} y^{\prime \prime }-2 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.250

3988

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.270

3989

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.215

3990

\begin{align*} y^{\prime \prime }+y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.270

3991

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.335

3992

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.279

3993

\begin{align*} \left (x^{2}-3\right ) y^{\prime \prime }-3 y^{\prime } x -5 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.318

3994

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.304

3995

\begin{align*} \left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.338

3996

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.243

3997

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.315

3998

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (2+x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.319

3999

\begin{align*} y^{\prime \prime }-{\mathrm e}^{x} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.372

4000

\begin{align*} y^{\prime \prime } x -\left (x -1\right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.473