2.2.39 Problems 3801 to 3900

Table 2.91: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

3801

\begin{align*} y^{\prime \prime }-4 y&=5 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

3802

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.354

3803

\begin{align*} y^{\prime \prime }-y&=4 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.316

3804

\begin{align*} y^{\prime \prime }+y x&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.618

3805

\begin{align*} y^{\prime \prime }+4 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

3806

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=5 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.335

3807

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

3808

\begin{align*} y^{\prime \prime }+y&=4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

3809

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2} \\ x_{2}^{\prime }&=2 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.328

3810

\begin{align*} x_{1}^{\prime }&=2 x_{1}-3 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.329

3811

\begin{align*} x_{1}^{\prime }&=4 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=x_{2}-x_{1} \\ \end{align*}

system_of_ODEs

0.316

3812

\begin{align*} x_{1}^{\prime }&=2 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=-4 x_{1}-6 x_{2} \\ \end{align*}

system_of_ODEs

0.281

3813

\begin{align*} x_{1}^{\prime }&=2 x_{2} \\ x_{2}^{\prime }&=-2 x_{1} \\ \end{align*}

system_of_ODEs

0.318

3814

\begin{align*} x_{1}^{\prime }&=x_{1}-3 x_{2} \\ x_{2}^{\prime }&=3 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.336

3815

\begin{align*} x_{1}^{\prime }&=2 x_{1} \\ x_{2}^{\prime }&=x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.533

3816

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}-x_{2}+3 x_{3} \\ x_{3}^{\prime }&=-x_{2}-3 x_{3} \\ \end{align*}

system_of_ODEs

0.867

3817

\begin{align*} x_{1}^{\prime }&=2 x_{2} \\ x_{2}^{\prime }&=x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 3 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.351

3818

\begin{align*} x_{1}^{\prime }&=2 x_{1}+5 x_{2} \\ x_{2}^{\prime }&=-x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.352

3819

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2} \\ x_{2}^{\prime }&=-x_{1}+4 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.304

3820

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}+5 \,{\mathrm e}^{4 t} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.583

3821

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2}+t \\ x_{2}^{\prime }&=-2 x_{1}+x_{2}+1 \\ \end{align*}

system_of_ODEs

0.475

3822

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=3 x_{1}-x_{2}+5 \,{\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.681

3823

\begin{align*} x_{1}^{\prime }&=-\tan \left (t \right ) x_{1}+3 \cos \left (t \right )^{2} \\ x_{2}^{\prime }&=x_{1}+\tan \left (t \right ) x_{2}+2 \sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 4 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.038

3824

\begin{align*} x_{1}^{\prime }&=2 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-3 x_{2} \\ \end{align*}

system_of_ODEs

0.322

3825

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=-b x_{1}-a x_{2} \\ \end{align*}

system_of_ODEs

0.602

3826

\begin{align*} x_{1}^{\prime }&=3 x_{2} \\ x_{2}^{\prime }&=-3 x_{1} \\ \end{align*}

system_of_ODEs

0.309

3827

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+3 x_{2} \\ x_{2}^{\prime }&=-2 x_{1}+5 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -2 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.362

3828

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.333

3829

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{2} \\ x_{2}^{\prime }&=x_{2}-x_{1} \\ \end{align*}

system_of_ODEs

0.276

3830

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\ x_{2}^{\prime }&=3 x_{1}+x_{2} \\ x_{3}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.588

3831

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{t} \\ x_{2}^{\prime }&=x_{2} \\ \end{align*}

system_of_ODEs

0.026

3832

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{t}+t x_{2} \\ x_{2}^{\prime }&=-\frac {x_{1}}{t} \\ \end{align*}

system_of_ODEs

0.030

3833

\begin{align*} x_{1}^{\prime }&=-x_{1}+2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\ \end{align*}

system_of_ODEs

0.332

3834

\begin{align*} x_{1}^{\prime }&=-2 x_{1}-7 x_{2} \\ x_{2}^{\prime }&=-x_{1}+4 x_{2} \\ \end{align*}

system_of_ODEs

0.322

3835

\begin{align*} x_{1}^{\prime }&=-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1} \\ \end{align*}

system_of_ODEs

0.359

3836

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=5 x_{1}-5 x_{2} \\ \end{align*}

system_of_ODEs

0.457

3837

\begin{align*} x_{1}^{\prime }&=-x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-2 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.336

3838

\begin{align*} x_{1}^{\prime }&=2 x_{1} \\ x_{2}^{\prime }&=5 x_{2}-7 x_{3} \\ x_{3}^{\prime }&=2 x_{2}-4 x_{3} \\ \end{align*}

system_of_ODEs

0.523

3839

\begin{align*} x_{1}^{\prime }&=-x_{1} \\ x_{2}^{\prime }&=x_{1}+5 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}+6 x_{2}-2 x_{3} \\ \end{align*}

system_of_ODEs

0.466

3840

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=-x_{1} \\ x_{3}^{\prime }&=5 x_{3} \\ \end{align*}

system_of_ODEs

0.535

3841

\begin{align*} x_{1}^{\prime }&=2 x_{1}+3 x_{3} \\ x_{2}^{\prime }&=-4 x_{2} \\ x_{3}^{\prime }&=-3 x_{1}+2 x_{3} \\ \end{align*}

system_of_ODEs

0.549

3842

\begin{align*} x_{1}^{\prime }&=3 x_{1}+2 x_{2}+6 x_{3} \\ x_{2}^{\prime }&=-2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }&=-x_{1}-2 x_{2}-4 x_{3} \\ \end{align*}

system_of_ODEs

0.604

3843

\begin{align*} x_{1}^{\prime }&=-3 x_{2}+x_{3} \\ x_{2}^{\prime }&=-2 x_{1}-x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{3} \\ \end{align*}

system_of_ODEs

0.494

3844

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{3} \\ x_{2}^{\prime }&=-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.757

3845

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }&=-x_{1}+x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.478

3846

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\ x_{2}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\ x_{3}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.452

3847

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}+3 x_{3}+4 x_{4} \\ x_{2}^{\prime }&=4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \\ x_{3}^{\prime }&=4 x_{1}+5 x_{2}+6 x_{3}+7 x_{4} \\ x_{4}^{\prime }&=7 x_{1}+6 x_{2}+5 x_{3}+4 x_{4} \\ \end{align*}

system_of_ODEs

0.961

3848

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=-x_{1} \\ x_{3}^{\prime }&=-x_{4} \\ x_{4}^{\prime }&=x_{3} \\ \end{align*}

system_of_ODEs

0.614

3849

\begin{align*} x_{1}^{\prime }&=-x_{1}+4 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 3 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.355

3850

\begin{align*} x_{1}^{\prime }&=-x_{1}-6 x_{2} \\ x_{2}^{\prime }&=3 x_{1}+5 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.465

3851

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\ x_{2}^{\prime }&=3 x_{1}+x_{2} \\ x_{3}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -4 \\ x_{2} \left (0\right ) &= 4 \\ x_{3} \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.560

3852

\begin{align*} x_{1}^{\prime }&=4 x_{2} \\ x_{2}^{\prime }&=-4 x_{1} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.335

3853

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=-b x_{1}-a x_{2} \\ \end{align*}

system_of_ODEs

0.474

3854

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2} \\ x_{2}^{\prime }&=-x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.254

3855

\begin{align*} x_{1}^{\prime }&=-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+4 x_{2} \\ \end{align*}

system_of_ODEs

0.274

3856

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.279

3857

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.529

3858

\begin{align*} x_{1}^{\prime }&=2 x_{1}+2 x_{2}-x_{3} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{1}+3 x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.504

3859

\begin{align*} x_{1}^{\prime }&=-2 x_{1} \\ x_{2}^{\prime }&=x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=-x_{1}+x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.434

3860

\begin{align*} x_{1}^{\prime }&=15 x_{1}-32 x_{2}+12 x_{3} \\ x_{2}^{\prime }&=8 x_{1}-17 x_{2}+6 x_{3} \\ x_{3}^{\prime }&=-x_{3} \\ \end{align*}

system_of_ODEs

0.480

3861

\begin{align*} x_{1}^{\prime }&=4 x_{1} \\ x_{2}^{\prime }&=x_{1}+4 x_{2} \\ x_{3}^{\prime }&=x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.396

3862

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=3 x_{2}+2 x_{3} \\ x_{3}^{\prime }&=2 x_{1}-2 x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.440

3863

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{2} \\ x_{2}^{\prime }&=-x_{1}+5 x_{2} \\ x_{3}^{\prime }&=4 x_{3} \\ \end{align*}

system_of_ODEs

0.419

3864

\begin{align*} x_{1}^{\prime }&=x_{2}-x_{1} \\ x_{2}^{\prime }&=-2 x_{1}-3 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2}-2 x_{3} \\ \end{align*}

system_of_ODEs

0.457

3865

\begin{align*} x_{1}^{\prime }&=-x_{2} \\ x_{2}^{\prime }&=x_{1} \\ x_{3}^{\prime }&=x_{1}+2 x_{3}+x_{4} \\ x_{4}^{\prime }&=x_{2}+2 x_{4} \\ \end{align*}

system_of_ODEs

0.996

3866

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+3 x_{2} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{3}^{\prime }&=x_{1}+x_{3}+x_{4} \\ x_{4}^{\prime }&=x_{2}+x_{4} \\ \end{align*}

system_of_ODEs

0.813

3867

\begin{align*} x_{1}^{\prime }&=-x_{2} \\ x_{2}^{\prime }&=x_{1} \\ x_{3}^{\prime }&=x_{1}-x_{4} \\ x_{4}^{\prime }&=x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.595

3868

\begin{align*} x_{1}^{\prime }&=-2 x_{1}-x_{2} \\ x_{2}^{\prime }&=x_{1}-4 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.313

3869

\begin{align*} x_{1}^{\prime }&=-2 x_{1}-x_{2}+4 x_{3} \\ x_{2}^{\prime }&=-x_{2} \\ x_{3}^{\prime }&=-x_{1}-3 x_{2}+2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -2 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.478

3870

\begin{align*} x_{1}^{\prime }&=4 x_{1}-3 x_{2}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.552

3871

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2} \\ x_{2}^{\prime }&=-x_{1}+2 x_{2}+4 \,{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.537

3872

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{2}+t \,{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=3 x_{2}+{\mathrm e}^{3 t} \\ \end{align*}

system_of_ODEs

0.404

3873

\begin{align*} x_{1}^{\prime }&=-x_{1}+x_{2}+20 \,{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=3 x_{1}+x_{2}+12 \,{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.713

3874

\begin{align*} x_{1}^{\prime }&=-x_{1}+2 x_{2}+54 t \,{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=-2 x_{1}+4 x_{2}+9 \,{\mathrm e}^{3 t} \\ \end{align*}

system_of_ODEs

0.536

3875

\begin{align*} x_{1}^{\prime }&=2 x_{1}+4 x_{2}+8 \sin \left (2 t \right ) \\ x_{2}^{\prime }&=-2 x_{1}-2 x_{2}+8 \cos \left (2 t \right ) \\ \end{align*}

system_of_ODEs

0.966

3876

\begin{align*} x_{1}^{\prime }&=3 x_{1}+2 x_{2}-3 \,{\mathrm e}^{t} \\ x_{2}^{\prime }&=-2 x_{1}-x_{2}+6 \,{\mathrm e}^{t} t \\ \end{align*}

system_of_ODEs

0.481

3877

\begin{align*} x_{1}^{\prime }&=x_{1}-{\mathrm e}^{t} \\ x_{2}^{\prime }&=2 x_{1}-3 x_{2}+2 x_{3}+6 \,{\mathrm e}^{-t} \\ x_{3}^{\prime }&=x_{1}-2 x_{2}+2 x_{3}+{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.778

3878

\begin{align*} x_{1}^{\prime }&=-x_{1}-2 x_{2}+2 x_{3}-{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=2 x_{1}+4 x_{2}-x_{3}+4 \,{\mathrm e}^{3 t} \\ x_{3}^{\prime }&=3 x_{3}+3 \,{\mathrm e}^{3 t} \\ \end{align*}

system_of_ODEs

0.726

3879

\begin{align*} x_{1}^{\prime }&=2 x_{1}-3 x_{2}+34 \sin \left (t \right ) \\ x_{2}^{\prime }&=-4 x_{1}-2 x_{2}+17 \cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.727

3880

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2} \\ x_{2}^{\prime }&=2 x_{2} \\ \end{align*}

system_of_ODEs

0.236

3881

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-x_{2} \\ \end{align*}

system_of_ODEs

0.270

3882

\begin{align*} x_{1}^{\prime }&=3 x_{1} \\ x_{2}^{\prime }&=3 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.431

3883

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.268

3884

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2} \\ x_{2}^{\prime }&=4 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.280

3885

\begin{align*} x_{1}^{\prime }&=2 x_{1} \\ x_{2}^{\prime }&=x_{2}-8 x_{3} \\ x_{3}^{\prime }&=2 x_{2}-7 x_{3} \\ \end{align*}

system_of_ODEs

0.471

3886

\begin{align*} x_{1}^{\prime }&=x_{2}+3 x_{3} \\ x_{2}^{\prime }&=2 x_{1}+3 x_{2}-2 x_{3} \\ x_{3}^{\prime }&=2 x_{2}+2 x_{3} \\ \end{align*}

system_of_ODEs

10.951

3887

\begin{align*} x_{1}^{\prime }&=-8 x_{1}+6 x_{2}-3 x_{3} \\ x_{2}^{\prime }&=-12 x_{1}+10 x_{2}-3 x_{3} \\ x_{3}^{\prime }&=-2 x_{3} \\ \end{align*}

system_of_ODEs

0.521

3888

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=6 x_{2}-7 x_{3}+3 x_{4} \\ x_{3}^{\prime }&=3 x_{3}-x_{4} \\ x_{4}^{\prime }&=-4 x_{2}+9 x_{3}-3 x_{4} \\ \end{align*}

system_of_ODEs

0.806

3889

\begin{align*} x_{1}^{\prime }&=-x_{2} \\ x_{2}^{\prime }&=x_{1} \\ x_{3}^{\prime }&=x_{2}-x_{4} \\ x_{4}^{\prime }&=x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.686

3890

\begin{align*} x_{1}^{\prime }&=\left (2 t -1\right ) x_{1} \\ x_{2}^{\prime }&={\mathrm e}^{-t^{2}+t} x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.033

3891

\begin{align*} x_{1}^{\prime }&=t \cot \left (t^{2}\right ) x_{1}+\frac {t \cos \left (t^{2}\right ) x_{3}}{2} \\ x_{2}^{\prime }&=\frac {x_{2}}{t}-x_{3}+2-t \sin \left (t \right ) \\ x_{3}^{\prime }&=\csc \left (t^{2}\right ) x_{1}+x_{2}-x_{3}+1-t \cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.050

3892

\begin{align*} x_{1}^{\prime }&=-6 x_{1}+x_{2} \\ x_{2}^{\prime }&=6 x_{1}-5 x_{2} \\ \end{align*}

system_of_ODEs

0.349

3893

\begin{align*} x_{1}^{\prime }&=9 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=5 x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.342

3894

\begin{align*} x_{1}^{\prime }&=10 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+2 x_{2} \\ \end{align*}

system_of_ODEs

0.277

3895

\begin{align*} x_{1}^{\prime }&=-8 x_{1}+5 x_{2} \\ x_{2}^{\prime }&=-5 x_{1}+2 x_{2} \\ \end{align*}

system_of_ODEs

0.284

3896

\begin{align*} x_{1}^{\prime }&=3 x_{1}+4 x_{3} \\ x_{2}^{\prime }&=2 x_{2} \\ x_{3}^{\prime }&=-4 x_{1}-5 x_{3} \\ \end{align*}

system_of_ODEs

0.503

3897

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-x_{2} \\ x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\ x_{3}^{\prime }&=6 x_{1}+6 x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.546

3898

\begin{align*} x_{1}^{\prime }&=3 x_{1}+13 x_{2} \\ x_{2}^{\prime }&=-x_{1}-3 x_{2} \\ \end{align*}

system_of_ODEs

0.354

3899

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-10 x_{2} \\ x_{2}^{\prime }&=5 x_{1}+11 x_{2} \\ \end{align*}

system_of_ODEs

0.467

3900

\begin{align*} x_{1}^{\prime }&=-x_{1}-5 x_{2}+x_{3} \\ x_{2}^{\prime }&=4 x_{1}-9 x_{2}-x_{3} \\ x_{3}^{\prime }&=3 x_{3} \\ \end{align*}

system_of_ODEs

0.757