2.3.189 Problems 18801 to 18900

Table 2.909: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

18801

4367

\begin{align*} y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime }&=0 \\ \end{align*}

2.440

18802

25753

\begin{align*} y^{\prime }+y \sin \left (x \right )&=x \\ \end{align*}

2.440

18803

780

\begin{align*} y^{\prime }&=1+x^{2}+y^{2}+y^{2} x^{2} \\ \end{align*}

2.441

18804

17313

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{8 y}}{t} \\ \end{align*}

2.441

18805

25466

\begin{align*} y^{\prime }&=\sin \left (t \right ) y \\ y \left (0\right ) &= 1 \\ \end{align*}

2.441

18806

7444

\begin{align*} x^{\prime }&=\alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \\ x \left (0\right ) &= x_{0} \\ \end{align*}

2.442

18807

19791

\begin{align*} y^{\prime }&=x -y \\ \end{align*}

2.442

18808

14030

\begin{align*} 5 y x -3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.443

18809

1533

\begin{align*} y^{\prime }&=-\frac {y \left (1+y\right )}{x} \\ y \left (1\right ) &= -2 \\ \end{align*}

2.444

18810

1700

\begin{align*} \left (2 x -1\right ) \left (y-1\right )+\left (2+x \right ) \left (x -3\right ) y^{\prime }&=0 \\ y \left (1\right ) &= -1 \\ \end{align*}

2.444

18811

15948

\begin{align*} y^{\prime }&=\frac {t y}{t^{2}+1} \\ \end{align*}

2.445

18812

17170

\begin{align*} \left (t^{2}+4\right ) y^{\prime }+2 t y&=2 t \\ y \left (0\right ) &= -4 \\ \end{align*}

2.445

18813

2321

\begin{align*} \cos \left (y\right ) \sin \left (t \right ) y^{\prime }&=\cos \left (t \right ) \sin \left (y\right ) \\ \end{align*}

2.446

18814

15124

\begin{align*} x \left (1+y\right )^{2}&=\left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \\ \end{align*}

2.447

18815

15857

\begin{align*} y^{\prime }&=\frac {1}{\left (1+y\right ) \left (t -2\right )} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.447

18816

24236

\begin{align*} 3 y x +3 y-4+\left (x +1\right )^{2} y^{\prime }&=0 \\ \end{align*}

2.447

18817

4624

\begin{align*} y^{\prime }&={\mathrm e}^{-\sin \left (x \right )}-y \cos \left (x \right ) \\ \end{align*}

2.448

18818

24186

\begin{align*} y^{2}-2 y x +6 x -\left (x^{2}-2 y x +2\right ) y^{\prime }&=0 \\ \end{align*}

2.448

18819

22469

\begin{align*} x^{2} y+y^{3}-x +\left (x^{3}-y+x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.449

18820

52

\begin{align*} y^{\prime } y&=x \left (1+y^{2}\right ) \\ \end{align*}

2.450

18821

2989

\begin{align*} \csc \left (y\right ) \cot \left (y\right ) y^{\prime }&=\csc \left (y\right )+{\mathrm e}^{x} \\ \end{align*}

2.450

18822

15790

\begin{align*} y^{\prime }&=\frac {1}{t y+t +y+1} \\ \end{align*}

2.450

18823

1227

\begin{align*} \frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{y-2}&=0 \\ \end{align*}

2.451

18824

13012

\begin{align*} y^{3} y^{\prime \prime }-a&=0 \\ \end{align*}

2.451

18825

16320

\begin{align*} 1+\ln \left (y x \right )+\frac {x y^{\prime }}{y}&=0 \\ \end{align*}

2.451

18826

17955

\begin{align*} \left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime }&=3 x^{2} \\ \end{align*}

2.451

18827

4613

\begin{align*} y^{\prime }&=a \sin \left (b x +c \right )+k y \\ \end{align*}

2.452

18828

8172

\begin{align*} y^{\prime }+4 y x&=8 x^{3} \\ \end{align*}

2.453

18829

7409

\begin{align*} y^{\prime }&=2 y-2 t y \\ y \left (0\right ) &= 3 \\ \end{align*}

2.454

18830

12345

\begin{align*} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

2.454

18831

4782

\begin{align*} y^{\prime } x&=\left (-y x +1\right ) y \\ \end{align*}

2.455

18832

17349

\begin{align*} y^{\prime }&=-\frac {y}{t -2} \\ y \left (2\right ) &= 0 \\ \end{align*}

2.456

18833

9932

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.457

18834

23761

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\ln \left (x \right ) \\ y \left (1\right ) &= A \\ y \left (2\right ) &= B \\ \end{align*}

2.458

18835

17973

\begin{align*} 3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.459

18836

90

\begin{align*} y^{\prime } x&=2 y+\cos \left (x \right ) x^{3} \\ \end{align*}

2.462

18837

8302

\begin{align*} y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

2.463

18838

6

\begin{align*} y^{\prime }&=x \sqrt {x^{2}+9} \\ y \left (-4\right ) &= 0 \\ \end{align*}

2.464

18839

3430

\begin{align*} y^{\prime }&=\frac {y}{t} \\ \end{align*}

2.464

18840

17305

\begin{align*} y&=t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \\ \end{align*}

2.464

18841

17341

\begin{align*} {\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

2.464

18842

16349

\begin{align*} y^{\prime }&=\frac {3 y}{x +1}-y^{2} \\ \end{align*}

2.465

18843

2485

\begin{align*} t y+\left (t^{2}+1\right ) y^{\prime }&=\left (t^{2}+1\right )^{{5}/{2}} \\ \end{align*}

2.466

18844

19483

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y&=0 \\ \end{align*}

2.466

18845

21441

\begin{align*} y^{\prime }+y&=\sin \left (x \right ) \\ \end{align*}

2.466

18846

7753

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.467

18847

8688

\begin{align*} y^{\prime }&=2 \sqrt {2 x +y+1} \\ \end{align*}

2.467

18848

9161

\begin{align*} y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \\ \end{align*}

2.467

18849

7039

\begin{align*} y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x}&=0 \\ \end{align*}

2.468

18850

20218

\begin{align*} \sin \left (x \right ) y^{\prime }-y \cos \left (x \right )+y^{2}&=0 \\ \end{align*}

2.468

18851

7750

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y x&=\left (x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

2.469

18852

22016

\begin{align*} y^{\prime }&=\frac {y^{2}+2 x}{y x} \\ \end{align*}

2.469

18853

2554

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

2.470

18854

11600

\begin{align*} \left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y&=0 \\ \end{align*}

2.470

18855

11684

\begin{align*} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2}&=0 \\ \end{align*}

2.470

18856

1617

\begin{align*} y^{\prime }&=x \left (y^{2}-1\right )^{{2}/{3}} \\ \end{align*}

2.471

18857

2480

\begin{align*} \sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

2.471

18858

2849

\begin{align*} y+3+\cot \left (x \right ) y^{\prime }&=0 \\ \end{align*}

2.472

18859

15382

\begin{align*} \frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

2.472

18860

25019

\begin{align*} y+y^{\prime }&=t y^{3} \\ \end{align*}

2.472

18861

4696

\begin{align*} y^{\prime }+y \left (1-x y^{2}\right )&=0 \\ \end{align*}

2.473

18862

17056

\begin{align*} y^{\prime }+y \sec \left (t \right )&=t \\ y \left (0\right ) &= 0 \\ \end{align*}

2.473

18863

17856

\begin{align*} y^{\prime }&=\left (y-1\right ) x \\ \end{align*}

2.473

18864

700

\begin{align*} -y+y^{\prime } x&=2 x^{2} y \\ y \left (1\right ) &= 1 \\ \end{align*}

2.474

18865

4636

\begin{align*} y^{\prime }&=y \sec \left (x \right ) \\ \end{align*}

2.474

18866

8348

\begin{align*} \csc \left (y\right )+\sec \left (x \right )^{2} y^{\prime }&=0 \\ \end{align*}

2.474

18867

16217

\begin{align*} y^{\prime } y&={\mathrm e}^{x -3 y^{2}} \\ \end{align*}

2.474

18868

5370

\begin{align*} {y^{\prime }}^{2}&=a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \\ \end{align*}

2.475

18869

14669

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \\ \end{align*}

2.475

18870

17273

\begin{align*} t -y+t y^{\prime }&=0 \\ \end{align*}

2.475

18871

4786

\begin{align*} y^{\prime } x&=y \left (2 y x +1\right ) \\ \end{align*}

2.476

18872

7429

\begin{align*} y^{\prime }&=x^{2} {\mathrm e}^{-4 x}-4 y \\ \end{align*}

2.476

18873

19691

\begin{align*} x^{\prime \prime }+3 x^{\prime }&=0 \\ \end{align*}

2.476

18874

11820

\begin{align*} 4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y&=0 \\ \end{align*}

2.477

18875

12428

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-v^{2}+x^{2}\right ) y&=0 \\ \end{align*}

2.477

18876

17234

\begin{align*} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

2.478

18877

23189

\begin{align*} 2 x -y \sin \left (y x \right )+\left (6 y^{2}-x \sin \left (y x \right )\right ) y^{\prime }&=0 \\ \end{align*}

2.478

18878

4529

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (-1+t \right ) \\ y \left (0\right ) &= 15 \\ y^{\prime }\left (0\right ) &= -6 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.479

18879

13775

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y&=0 \\ \end{align*}

2.479

18880

2994

\begin{align*} 3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x}{y^{2}} \\ \end{align*}

2.480

18881

7936

\begin{align*} L i^{\prime }+R i&=E \sin \left (2 t \right ) \\ i \left (0\right ) &= 0 \\ \end{align*}

2.480

18882

9924

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.480

18883

12314

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

2.480

18884

12923

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-1&=0 \\ \end{align*}

2.480

18885

25034

\begin{align*} 2 t y+2 t^{3}+\left (t^{2}-y\right ) y^{\prime }&=0 \\ \end{align*}

2.480

18886

3436

\begin{align*} y^{\prime }&=1-y^{2} \\ \end{align*}

2.481

18887

19101

\begin{align*} y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.481

18888

83

\begin{align*} y^{\prime } x +y&=3 y x \\ y \left (1\right ) &= 0 \\ \end{align*}

2.482

18889

3294

\begin{align*} y&=y^{\prime } x \left (1+y^{\prime }\right ) \\ \end{align*}

2.483

18890

9200

\begin{align*} -y+y^{\prime } x&=2 x \\ y \left (1\right ) &= 0 \\ \end{align*}

2.483

18891

9528

\begin{align*} x \left (x +3\right )^{2} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.483

18892

15018

\begin{align*} y^{\prime } x +y&=x^{3} \\ \end{align*}

2.483

18893

16287

\begin{align*} \cos \left (-4 y+8 x -3\right ) y^{\prime }&=2+2 \cos \left (-4 y+8 x -3\right ) \\ \end{align*}

2.483

18894

3625

\begin{align*} \sin \left (x \right ) y^{\prime }-y \cos \left (x \right )&=\sin \left (2 x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

2.485

18895

9160

\begin{align*} 2 x +3 y-1-4 \left (x +1\right ) y^{\prime }&=0 \\ \end{align*}

2.485

18896

2340

\begin{align*} \frac {y^{2}}{2}-2 y \,{\mathrm e}^{t}+\left (-{\mathrm e}^{t}+y\right ) y^{\prime }&=0 \\ \end{align*}

2.486

18897

25820

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ \end{align*}

2.486

18898

5434

\begin{align*} {y^{\prime }}^{2}&={\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right ) \\ \end{align*}

2.487

18899

18473

\begin{align*} y^{\prime }&=\frac {x^{4}}{y} \\ \end{align*}

2.487

18900

6990

\begin{align*} 2 x y^{\prime } y+\left (x +1\right ) y^{2}&={\mathrm e}^{x} \\ \end{align*}

2.488