| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 18801 |
\begin{align*}
y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.440 |
|
| 18802 |
\begin{align*}
y^{\prime }+y \sin \left (x \right )&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.440 |
|
| 18803 |
\begin{align*}
y^{\prime }&=1+x^{2}+y^{2}+y^{2} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.441 |
|
| 18804 |
\begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{8 y}}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.441 |
|
| 18805 |
\begin{align*}
y^{\prime }&=\sin \left (t \right ) y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.441 |
|
| 18806 |
\begin{align*}
x^{\prime }&=\alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \\
x \left (0\right ) &= x_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.442 |
|
| 18807 |
\begin{align*}
y^{\prime }&=x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.442 |
|
| 18808 |
\begin{align*}
5 y x -3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.443 |
|
| 18809 |
\begin{align*}
y^{\prime }&=-\frac {y \left (1+y\right )}{x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 18810 |
\begin{align*}
\left (2 x -1\right ) \left (y-1\right )+\left (2+x \right ) \left (x -3\right ) y^{\prime }&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 18811 |
\begin{align*}
y^{\prime }&=\frac {t y}{t^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.445 |
|
| 18812 |
\begin{align*}
\left (t^{2}+4\right ) y^{\prime }+2 t y&=2 t \\
y \left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.445 |
|
| 18813 |
\begin{align*}
\cos \left (y\right ) \sin \left (t \right ) y^{\prime }&=\cos \left (t \right ) \sin \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.446 |
|
| 18814 |
\begin{align*}
x \left (1+y\right )^{2}&=\left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.447 |
|
| 18815 |
\begin{align*}
y^{\prime }&=\frac {1}{\left (1+y\right ) \left (t -2\right )} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.447 |
|
| 18816 |
\begin{align*}
3 y x +3 y-4+\left (x +1\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.447 |
|
| 18817 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-\sin \left (x \right )}-y \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.448 |
|
| 18818 | \begin{align*}
y^{2}-2 y x +6 x -\left (x^{2}-2 y x +2\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 2.448 |
|
| 18819 |
\begin{align*}
x^{2} y+y^{3}-x +\left (x^{3}-y+x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.449 |
|
| 18820 |
\begin{align*}
y^{\prime } y&=x \left (1+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.450 |
|
| 18821 |
\begin{align*}
\csc \left (y\right ) \cot \left (y\right ) y^{\prime }&=\csc \left (y\right )+{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.450 |
|
| 18822 |
\begin{align*}
y^{\prime }&=\frac {1}{t y+t +y+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.450 |
|
| 18823 |
\begin{align*}
\frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{y-2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.451 |
|
| 18824 |
\begin{align*}
y^{3} y^{\prime \prime }-a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.451 |
|
| 18825 |
\begin{align*}
1+\ln \left (y x \right )+\frac {x y^{\prime }}{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.451 |
|
| 18826 |
\begin{align*}
\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime }&=3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.451 |
|
| 18827 |
\begin{align*}
y^{\prime }&=a \sin \left (b x +c \right )+k y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.452 |
|
| 18828 |
\begin{align*}
y^{\prime }+4 y x&=8 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.453 |
|
| 18829 |
\begin{align*}
y^{\prime }&=2 y-2 t y \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.454 |
|
| 18830 |
\begin{align*}
b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.454 |
|
| 18831 |
\begin{align*}
y^{\prime } x&=\left (-y x +1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.455 |
|
| 18832 |
\begin{align*}
y^{\prime }&=-\frac {y}{t -2} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.456 |
|
| 18833 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.457 |
|
| 18834 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\ln \left (x \right ) \\
y \left (1\right ) &= A \\
y \left (2\right ) &= B \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.458 |
|
| 18835 |
\begin{align*}
3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.459 |
|
| 18836 |
\begin{align*}
y^{\prime } x&=2 y+\cos \left (x \right ) x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.462 |
|
| 18837 | \begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.463 |
|
| 18838 |
\begin{align*}
y^{\prime }&=x \sqrt {x^{2}+9} \\
y \left (-4\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.464 |
|
| 18839 |
\begin{align*}
y^{\prime }&=\frac {y}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.464 |
|
| 18840 |
\begin{align*}
y&=t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.464 |
|
| 18841 |
\begin{align*}
{\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.464 |
|
| 18842 |
\begin{align*}
y^{\prime }&=\frac {3 y}{x +1}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.465 |
|
| 18843 |
\begin{align*}
t y+\left (t^{2}+1\right ) y^{\prime }&=\left (t^{2}+1\right )^{{5}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.466 |
|
| 18844 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.466 |
|
| 18845 |
\begin{align*}
y^{\prime }+y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.466 |
|
| 18846 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.467 |
|
| 18847 |
\begin{align*}
y^{\prime }&=2 \sqrt {2 x +y+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.467 |
|
| 18848 |
\begin{align*}
y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.467 |
|
| 18849 |
\begin{align*}
y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.468 |
|
| 18850 |
\begin{align*}
\sin \left (x \right ) y^{\prime }-y \cos \left (x \right )+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.468 |
|
| 18851 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y x&=\left (x^{2}+1\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.469 |
|
| 18852 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+2 x}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.469 |
|
| 18853 |
\begin{align*}
t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.470 |
|
| 18854 |
\begin{align*}
\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.470 |
|
| 18855 |
\begin{align*}
{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.470 |
|
| 18856 | \begin{align*}
y^{\prime }&=x \left (y^{2}-1\right )^{{2}/{3}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.471 |
|
| 18857 |
\begin{align*}
\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.471 |
|
| 18858 |
\begin{align*}
y+3+\cot \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.472 |
|
| 18859 |
\begin{align*}
\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.472 |
|
| 18860 |
\begin{align*}
y+y^{\prime }&=t y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.472 |
|
| 18861 |
\begin{align*}
y^{\prime }+y \left (1-x y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.473 |
|
| 18862 |
\begin{align*}
y^{\prime }+y \sec \left (t \right )&=t \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.473 |
|
| 18863 |
\begin{align*}
y^{\prime }&=\left (y-1\right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.473 |
|
| 18864 |
\begin{align*}
-y+y^{\prime } x&=2 x^{2} y \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.474 |
|
| 18865 |
\begin{align*}
y^{\prime }&=y \sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.474 |
|
| 18866 |
\begin{align*}
\csc \left (y\right )+\sec \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.474 |
|
| 18867 |
\begin{align*}
y^{\prime } y&={\mathrm e}^{x -3 y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.474 |
|
| 18868 |
\begin{align*}
{y^{\prime }}^{2}&=a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.475 |
|
| 18869 |
\begin{align*}
y^{\prime \prime \prime \prime }+16 y&=x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.475 |
|
| 18870 |
\begin{align*}
t -y+t y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.475 |
|
| 18871 |
\begin{align*}
y^{\prime } x&=y \left (2 y x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.476 |
|
| 18872 |
\begin{align*}
y^{\prime }&=x^{2} {\mathrm e}^{-4 x}-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.476 |
|
| 18873 |
\begin{align*}
x^{\prime \prime }+3 x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.476 |
|
| 18874 |
\begin{align*}
4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.477 |
|
| 18875 | \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (-v^{2}+x^{2}\right ) y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.477 |
|
| 18876 |
\begin{align*}
\frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
2.478 |
|
| 18877 |
\begin{align*}
2 x -y \sin \left (y x \right )+\left (6 y^{2}-x \sin \left (y x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.478 |
|
| 18878 |
\begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (-1+t \right ) \\
y \left (0\right ) &= 15 \\
y^{\prime }\left (0\right ) &= -6 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.479 |
|
| 18879 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.479 |
|
| 18880 |
\begin{align*}
3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.480 |
|
| 18881 |
\begin{align*}
L i^{\prime }+R i&=E \sin \left (2 t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.480 |
|
| 18882 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.480 |
|
| 18883 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.480 |
|
| 18884 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.480 |
|
| 18885 |
\begin{align*}
2 t y+2 t^{3}+\left (t^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.480 |
|
| 18886 |
\begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.481 |
|
| 18887 |
\begin{align*}
y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.481 |
|
| 18888 |
\begin{align*}
y^{\prime } x +y&=3 y x \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.482 |
|
| 18889 |
\begin{align*}
y&=y^{\prime } x \left (1+y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| 18890 |
\begin{align*}
-y+y^{\prime } x&=2 x \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| 18891 |
\begin{align*}
x \left (x +3\right )^{2} y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| 18892 |
\begin{align*}
y^{\prime } x +y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| 18893 |
\begin{align*}
\cos \left (-4 y+8 x -3\right ) y^{\prime }&=2+2 \cos \left (-4 y+8 x -3\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| 18894 | \begin{align*}
\sin \left (x \right ) y^{\prime }-y \cos \left (x \right )&=\sin \left (2 x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 2.485 |
|
| 18895 |
\begin{align*}
2 x +3 y-1-4 \left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.485 |
|
| 18896 |
\begin{align*}
\frac {y^{2}}{2}-2 y \,{\mathrm e}^{t}+\left (-{\mathrm e}^{t}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.486 |
|
| 18897 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.486 |
|
| 18898 |
\begin{align*}
{y^{\prime }}^{2}&={\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.487 |
|
| 18899 |
\begin{align*}
y^{\prime }&=\frac {x^{4}}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.487 |
|
| 18900 |
\begin{align*}
2 x y^{\prime } y+\left (x +1\right ) y^{2}&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.488 |
|