2.2.17 Problem 18
Internal
problem
ID
[10428]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
18
Date
solved
:
Monday, January 26, 2026 at 10:20:33 PM
CAS
classification
:
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
2.2.17.1 second order change of variable on x method 2
1.129 (sec)
\begin{align*}
\left (1-x^{2}\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y&=0 \\
\end{align*}
Entering second order change of variable on \(x\) method 2 solverIn normal form the ode
\begin{align*} \left (1-x^{2}\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y = 0\tag {1} \end{align*}
Becomes
\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}
Where
\begin{align*} p \left (x \right )&=\frac {x}{x^{2}-1}\\ q \left (x \right )&=\frac {c^{2}}{x^{2}-1} \end{align*}
Applying change of variables \(\tau = g \left (x \right )\) to (2) gives
\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }y \left (\tau \right )\right )+q_{1} y \left (\tau \right )&=0 \tag {3} \end{align*}
Where \(\tau \) is the new independent variable, and
\begin{align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {5} \end{align*}
Let \(p_{1} = 0\). Eq (4) simplifies to
\begin{align*} \tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )&=0 \end{align*}
This ode is solved resulting in
\begin{align*} \tau &= \int {\mathrm e}^{-\int p \left (x \right )d x}d x\\ &= \int {\mathrm e}^{-\int \frac {x}{x^{2}-1}d x}d x\\ &= \int e^{-\frac {\ln \left (x -1\right )}{2}-\frac {\ln \left (1+x \right )}{2}} \,dx\\ &= \int \frac {1}{\sqrt {x -1}\, \sqrt {1+x}}d x\\ &= \frac {\sqrt {\left (1+x \right ) \left (x -1\right )}\, \ln \left (x +\sqrt {x^{2}-1}\right )}{\sqrt {x -1}\, \sqrt {1+x}}\tag {6} \end{align*}
Using (6) to evaluate \(q_{1}\) from (5) gives
\begin{align*} q_{1} \left (\tau \right ) &= \frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\\ &= \frac {\frac {c^{2}}{x^{2}-1}}{\frac {1}{\left (1+x \right ) \left (x -1\right )}}\\ &= c^{2}\tag {7} \end{align*}
Substituting the above in (3) and noting that now \(p_{1} = 0\) results in
\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+q_{1} y \left (\tau \right )&=0 \\ \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+c^{2} y \left (\tau \right )&=0 \end{align*}
The above ode is now solved for \(y \left (\tau \right )\).Entering second order linear constant coefficient ode
solver
This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[ A y''(\tau ) + B y'(\tau ) + C y(\tau ) = 0 \]
Where in the above \(A=1, B=0, C=c^{2}\). Let the solution be \(y \left (\tau \right )=e^{\lambda \tau }\). Substituting this into the ODE gives \[ \lambda ^{2} {\mathrm e}^{\tau \lambda }+c^{2} {\mathrm e}^{\tau \lambda } = 0 \tag {1} \]
Since
exponential function is never zero, then dividing Eq(2) throughout by \(e^{\lambda \tau }\) gives \[ c^{2}+\lambda ^{2} = 0 \tag {2} \]
Equation (2)
is the characteristic equation of the ODE. Its roots determine the general solution
form. Using the quadratic formula the roots are \[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]
Substituting \(A=1, B=0, C=c^{2}\) into the above gives
\begin{align*} \lambda _{1,2} &= \frac {0}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {0^2 - (4) \left (1\right )\left (c^{2}\right )}\\ &= \pm \sqrt {-c^{2}} \end{align*}
Hence
\begin{align*} \lambda _1 &= + \sqrt {-c^{2}}\\ \lambda _2 &= - \sqrt {-c^{2}} \end{align*}
Which simplifies to
\begin{align*}
\lambda _1 &= i \sqrt {c^{2}} \\
\lambda _2 &= -i \sqrt {c^{2}} \\
\end{align*}
Since the roots are complex conjugate of each others, then let the roots be \[
\lambda _{1,2} = \alpha \pm i \beta
\]
Where \(\alpha =0\) and \(\beta =\sqrt {c^{2}}\). Therefore the final solution, when using Euler relation, can be written as \[
y \left (\tau \right ) = e^{\alpha \tau } \left ( c_1 \cos (\beta \tau ) + c_2 \sin (\beta \tau ) \right )
\]
Which
becomes \[
y \left (\tau \right ) = e^{0}\left (c_1 \cos \left (\sqrt {c^{2}}\, \tau \right )+c_2 \sin \left (\sqrt {c^{2}}\, \tau \right )\right )
\]
Or \[
y \left (\tau \right ) = c_1 \cos \left (\sqrt {c^{2}}\, \tau \right )+c_2 \sin \left (\sqrt {c^{2}}\, \tau \right )
\]
The above solution is now transformed back to \(y\) using (6) which results in
\[
y = c_1 \cos \left (\frac {\sqrt {c^{2}}\, \sqrt {\left (1+x \right ) \left (x -1\right )}\, \ln \left (x +\sqrt {x^{2}-1}\right )}{\sqrt {x -1}\, \sqrt {1+x}}\right )+c_2 \sin \left (\frac {\sqrt {c^{2}}\, \sqrt {\left (1+x \right ) \left (x -1\right )}\, \ln \left (x +\sqrt {x^{2}-1}\right )}{\sqrt {x -1}\, \sqrt {1+x}}\right )
\]
Summary of solutions found
\begin{align*}
y &= c_1 \cos \left (\frac {\sqrt {c^{2}}\, \sqrt {\left (1+x \right ) \left (x -1\right )}\, \ln \left (x +\sqrt {x^{2}-1}\right )}{\sqrt {x -1}\, \sqrt {1+x}}\right )+c_2 \sin \left (\frac {\sqrt {c^{2}}\, \sqrt {\left (1+x \right ) \left (x -1\right )}\, \ln \left (x +\sqrt {x^{2}-1}\right )}{\sqrt {x -1}\, \sqrt {1+x}}\right ) \\
\end{align*}
2.2.17.2 second order kovacic
0.661 (sec)
\begin{align*}
\left (1-x^{2}\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y&=0 \\
\end{align*}
Entering kovacic solverWriting the ode as \begin{align*} \left (1-x^{2}\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end{align*}
Comparing (1) and (2) shows that
\begin{align*} A &= 1-x^{2} \\ B &= -x\tag {3} \\ C &= -c^{2} \end{align*}
Applying the Liouville transformation on the dependent variable gives
\begin{align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end{align*}
Then (2) becomes
\begin{align*} z''(x) = r z(x)\tag {4} \end{align*}
Where \(r\) is given by
\begin{align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end{align*}
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
\begin{align*} r &= \frac {-4 c^{2} x^{2}+4 c^{2}-x^{2}-2}{4 \left (x^{2}-1\right )^{2}}\tag {6} \end{align*}
Comparing the above to (5) shows that
\begin{align*} s &= -4 c^{2} x^{2}+4 c^{2}-x^{2}-2\\ t &= 4 \left (x^{2}-1\right )^{2} \end{align*}
Therefore eq. (4) becomes
\begin{align*} z''(x) &= \left ( \frac {-4 c^{2} x^{2}+4 c^{2}-x^{2}-2}{4 \left (x^{2}-1\right )^{2}}\right ) z(x)\tag {7} \end{align*}
Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\begin{align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end{align*}
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases
depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these
cases.
| | |
| Case |
Allowed pole order for \(r\) |
Allowed value for \(\mathcal {O}(\infty )\) |
| | |
| 1 |
\(\left \{ 0,1,2,4,6,8,\cdots \right \} \) |
\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \) |
| | |
|
2
|
Need to have at least one pole
that is either order \(2\) or odd order
greater than \(2\). Any other pole order
is allowed as long as the above
condition is satisfied. Hence the
following set of pole orders are all
allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\). |
no condition |
| | |
| 3 |
\(\left \{ 1,2\right \} \) |
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \) |
| | |
Table 2.33: Necessary conditions for each Kovacic case
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore
\begin{align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 4 - 2 \\ &= 2 \end{align*}
The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 \left (x^{2}-1\right )^{2}\).
There is a pole at \(x=1\) of order \(2\). There is a pole at \(x=-1\) of order \(2\). Since there is no odd order pole larger
than \(2\) and the order at \(\infty \) is \(2\) then the necessary conditions for case one are met. Since there is a pole
of order \(2\) then necessary conditions for case two are met. Since pole order is not larger than \(2\)
and the order at \(\infty \) is \(2\) then the necessary conditions for case three are met. Therefore
\begin{align*} L &= [1, 2, 4, 6, 12] \end{align*}
Attempting to find a solution using case \(n=1\).
Unable to find solution using case one
Attempting to find a solution using case \(n=2\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r = -\frac {3}{16 \left (x -1\right )^{2}}+\frac {\frac {1}{16}-\frac {c^{2}}{2}}{x -1}-\frac {3}{16 \left (1+x \right )^{2}}+\frac {-\frac {1}{16}+\frac {c^{2}}{2}}{1+x}
\]
For the pole at \(x=1\) let \(b\) be the
coefficient of \(\frac {1}{ \left (x -1\right )^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-{\frac {3}{16}}\). Hence
\begin{align*} E_c &= \{2, 2+2\sqrt {1+4 b}, 2-2\sqrt {1+4 b} \} \\ &= \{1, 2, 3\} \end{align*}
For the pole at \(x=-1\) let \(b\) be the coefficient of \(\frac {1}{ \left (1+x \right )^{2}}\) in the partial fractions decomposition of \(r\) given above.
Therefore \(b=-{\frac {3}{16}}\). Hence
\begin{align*} E_c &= \{2, 2+2\sqrt {1+4 b}, 2-2\sqrt {1+4 b} \} \\ &= \{1, 2, 3\} \end{align*}
Since the order of \(r\) at \(\infty \) is 2 then let \(b\) be the coefficient of \(\frac {1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty \).
which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\begin{alignat*}{2} r &= \frac {s}{t} &&= \frac {-4 c^{2} x^{2}+4 c^{2}-x^{2}-2}{4 \left (x^{2}-1\right )^{2}} \end{alignat*}
Since the \(\text {gcd}(s,t)=1\). This gives \(b=-1\). Hence
\begin{align*} E_\infty &= \{2, 2+2\sqrt {1+4 b}, 2-2\sqrt {1+4 b} \} \\ &= \{2\} \end{align*}
The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty \) for case 2 of
Kovacic algorithm.
| | |
| pole \(c\) location |
pole order |
\(E_c\) |
| | |
| \(1\) | \(2\) | \(\{1, 2, 3\}\) |
| | |
| \(-1\) | \(2\) | \(\{1, 2, 3\}\) |
| | |
| |
| Order of \(r\) at \(\infty \) |
\(E_\infty \) |
| |
| \(2\) |
\(\{2\}\) |
| |
Using the family \(\{e_1,e_2,\dots ,e_\infty \}\) given by
\[ e_1=1,\hspace {3pt} e_2=1,\hspace {3pt} e_\infty =2 \]
Gives a non negative integer \(d\) (the degree of the polynomial \(p(x)\)), which is
generated using \begin{align*} d &= \frac {1}{2} \left ( e_\infty - \sum _{c \in \Gamma } e_c \right )\\ &= \frac {1}{2} \left ( 2 - \left (1+\left (1\right )\right )\right )\\ &= 0 \end{align*}
We now form the following rational function
\begin{align*} \theta &= \frac {1}{2} \sum _{c \in \Gamma } \frac {e_c}{x-c} \\ &= \frac {1}{2} \left (\frac {1}{\left (x-\left (1\right )\right )}+\frac {1}{\left (x-\left (-1\right )\right )}\right ) \\ &= \frac {1}{-2+2 x}+\frac {1}{2 x +2} \end{align*}
Now we search for a monic polynomial \(p(x)\) of degree \(d=0\) such that
\[ p'''+3 \theta p'' + \left (3 \theta ^2 + 3 \theta ' - 4 r\right )p' + \left (\theta '' + 3 \theta \theta ' + \theta ^3 - 4 r \theta - 2 r' \right ) p = 0 \tag {1A} \]
Since \(d=0\), then letting \[ p = 1\tag {2A} \]
Substituting \(p\)
and \(\theta \) into Eq. (1A) gives \[
0 = 0
\]
And solving for \(p\) gives \[ p = 1 \]
Now that \(p(x)\) is found let \begin{align*} \phi &= \theta + \frac {p'}{p}\\ &= \frac {1}{-2+2 x}+\frac {1}{2 x +2} \end{align*}
Let \(\omega \) be the solution of
\begin{align*} \omega ^2 - \phi \omega + \left ( \frac {1}{2} \phi ' + \frac {1}{2} \phi ^2 - r \right ) &= 0 \end{align*}
Substituting the values for \(\phi \) and \(r\) into the above equation gives
\[
w^{2}-w \left (\frac {1}{-2+2 x}+\frac {1}{2 x +2}\right )+\frac {4 c^{2} x^{2}-4 c^{2}+x^{2}}{4 \left (x^{2}-1\right )^{2}} = 0
\]
Solving for \(\omega \) gives \begin{align*} \omega &= \frac {x +2 c \sqrt {1-x^{2}}}{2 \left (1+x \right ) \left (x -1\right )} \end{align*}
Therefore the first solution to the ode \(z'' = r z\) is
\begin{align*} z_1(x) &= e^{ \int \omega \,dx} \\ &= {\mathrm e}^{\int \frac {x +2 c \sqrt {1-x^{2}}}{2 \left (1+x \right ) \left (x -1\right )}d x}\\ &= \left (x^{2}-1\right )^{{1}/{4}} {\mathrm e}^{-c \arcsin \left (x \right )} \end{align*}
The first solution to the original ode in \(y\) is found from
\begin{align*}
y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\
&= z_1 e^{ -\int \frac {1}{2} \frac {-x}{1-x^{2}} \,dx} \\
&= z_1 e^{-\frac {\ln \left (x -1\right )}{4}-\frac {\ln \left (1+x \right )}{4}} \\
&= z_1 \left (\frac {1}{\left (x -1\right )^{{1}/{4}} \left (1+x \right )^{{1}/{4}}}\right ) \\
\end{align*}
Which simplifies to \[
y_1 = \frac {\left (x^{2}-1\right )^{{1}/{4}} {\mathrm e}^{-c \arcsin \left (x \right )}}{\left (x -1\right )^{{1}/{4}} \left (1+x \right )^{{1}/{4}}}
\]
The second solution \(y_2\)
to the original ode is found using reduction of order \[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \]
Substituting gives \begin{align*}
y_2 &= y_1 \int \frac { e^{\int -\frac {-x}{1-x^{2}} \,dx}}{\left (y_1\right )^2} \,dx \\
&= y_1 \int \frac { e^{-\frac {\ln \left (x -1\right )}{2}-\frac {\ln \left (1+x \right )}{2}}}{\left (y_1\right )^2} \,dx \\
&= y_1 \left (\int \frac {{\mathrm e}^{-\frac {\ln \left (x -1\right )}{2}-\frac {\ln \left (1+x \right )}{2}} \sqrt {x -1}\, \sqrt {1+x}\, {\mathrm e}^{2 c \arcsin \left (x \right )}}{\sqrt {x^{2}-1}}d x\right ) \\
\end{align*}
Therefore the solution
is
\begin{align*}
y &= c_3 y_1 + c_4 y_2 \\
&= c_3 \left (\frac {\left (x^{2}-1\right )^{{1}/{4}} {\mathrm e}^{-c \arcsin \left (x \right )}}{\left (x -1\right )^{{1}/{4}} \left (1+x \right )^{{1}/{4}}}\right ) + c_4 \left (\frac {\left (x^{2}-1\right )^{{1}/{4}} {\mathrm e}^{-c \arcsin \left (x \right )}}{\left (x -1\right )^{{1}/{4}} \left (1+x \right )^{{1}/{4}}}\left (\int \frac {{\mathrm e}^{-\frac {\ln \left (x -1\right )}{2}-\frac {\ln \left (1+x \right )}{2}} \sqrt {x -1}\, \sqrt {1+x}\, {\mathrm e}^{2 c \arcsin \left (x \right )}}{\sqrt {x^{2}-1}}d x\right )\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= \frac {c_3 \left (x^{2}-1\right )^{{1}/{4}} {\mathrm e}^{-c \arcsin \left (x \right )}}{\left (x -1\right )^{{1}/{4}} \left (1+x \right )^{{1}/{4}}}+\frac {c_4 \left (x^{2}-1\right )^{{1}/{4}} {\mathrm e}^{-c \arcsin \left (x \right )} \int \frac {{\mathrm e}^{2 c \arcsin \left (x \right )}}{\sqrt {x^{2}-1}}d x}{\left (x -1\right )^{{1}/{4}} \left (1+x \right )^{{1}/{4}}} \\
\end{align*}
2.2.17.3 ✓ Maple. Time used: 0.001 (sec). Leaf size: 37
ode:=(-x^2+1)*diff(diff(y(x),x),x)-diff(y(x),x)*x-c^2*y(x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = c_1 \left (x +\sqrt {x^{2}-1}\right )^{i c}+c_2 \left (x +\sqrt {x^{2}-1}\right )^{-i c}
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (-x^{2}+1\right ) \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )-x \left (\frac {d}{d x}y \left (x \right )\right )-c^{2} y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=-\frac {c^{2} y \left (x \right )}{x^{2}-1}-\frac {x \left (\frac {d}{d x}y \left (x \right )\right )}{x^{2}-1} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (x \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )+\frac {x \left (\frac {d}{d x}y \left (x \right )\right )}{x^{2}-1}+\frac {c^{2} y \left (x \right )}{x^{2}-1}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {x}{x^{2}-1}, P_{3}\left (x \right )=\frac {c^{2}}{x^{2}-1}\right ] \\ {} & \circ & \left (x +1\right )\cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-1 \\ {} & {} & \left (\left (x +1\right )\cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-1}}}=\frac {1}{2} \\ {} & \circ & \left (x +1\right )^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-1 \\ {} & {} & \left (\left (x +1\right )^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-1}}}=0 \\ {} & \circ & x =-1\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=-1 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & \left (x^{2}-1\right ) \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+x \left (\frac {d}{d x}y \left (x \right )\right )+c^{2} y \left (x \right )=0 \\ \bullet & {} & \textrm {Change variables using}\hspace {3pt} x =u -1\hspace {3pt}\textrm {so that the regular singular point is at}\hspace {3pt} u =0 \\ {} & {} & \left (u^{2}-2 u \right ) \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )+\left (u -1\right ) \left (\frac {d}{d u}y \left (u \right )\right )+c^{2} y \left (u \right )=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \left (u \right ) \\ {} & {} & y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) u^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) u^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..2 \\ {} & {} & u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) u^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) u^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & -a_{0} r \left (-1+2 r \right ) u^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (-a_{k +1} \left (k +1+r \right ) \left (2 k +1+2 r \right )+a_{k} \left (c^{2}+k^{2}+2 k r +r^{2}\right )\right ) u^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & -r \left (-1+2 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, \frac {1}{2}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & -2 \left (k +1+r \right ) \left (k +\frac {1}{2}+r \right ) a_{k +1}+a_{k} \left (c^{2}+k^{2}+2 k r +r^{2}\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {a_{k} \left (c^{2}+k^{2}+2 k r +r^{2}\right )}{\left (k +1+r \right ) \left (2 k +1+2 r \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=\frac {a_{k} \left (c^{2}+k^{2}\right )}{\left (k +1\right ) \left (2 k +1\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k}, a_{k +1}=\frac {a_{k} \left (c^{2}+k^{2}\right )}{\left (k +1\right ) \left (2 k +1\right )}\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =x +1 \\ {} & {} & \left [y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +1\right )^{k}, a_{k +1}=\frac {a_{k} \left (c^{2}+k^{2}\right )}{\left (k +1\right ) \left (2 k +1\right )}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & a_{k +1}=\frac {a_{k} \left (c^{2}+k^{2}+k +\frac {1}{4}\right )}{\left (k +\frac {3}{2}\right ) \left (2 k +2\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +\frac {1}{2}}, a_{k +1}=\frac {a_{k} \left (c^{2}+k^{2}+k +\frac {1}{4}\right )}{\left (k +\frac {3}{2}\right ) \left (2 k +2\right )}\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =x +1 \\ {} & {} & \left [y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +1\right )^{k +\frac {1}{2}}, a_{k +1}=\frac {a_{k} \left (c^{2}+k^{2}+k +\frac {1}{4}\right )}{\left (k +\frac {3}{2}\right ) \left (2 k +2\right )}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y \left (x \right )=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (x +1\right )^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} \left (x +1\right )^{k +\frac {1}{2}}\right ), a_{k +1}=\frac {a_{k} \left (c^{2}+k^{2}\right )}{\left (k +1\right ) \left (2 k +1\right )}, b_{k +1}=\frac {b_{k} \left (c^{2}+k^{2}+k +\frac {1}{4}\right )}{\left (k +\frac {3}{2}\right ) \left (2 k +2\right )}\right ] \end {array} \]
2.2.17.4 ✓ Mathematica. Time used: 0.025 (sec). Leaf size: 42
ode=(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]-c^2*y[x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to c_1 \cos \left (c \log \left (\sqrt {x^2-1}+x\right )\right )+c_2 \sin \left (c \log \left (\sqrt {x^2-1}+x\right )\right ) \end{align*}
2.2.17.5 ✗ Sympy
from sympy import *
x = symbols("x")
c = symbols("c")
y = Function("y")
ode = Eq(-c**2*y(x) - x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
False
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode(ode,func=y(x))
('factorable', '2nd_hypergeometric', '2nd_hypergeometric_Integral', '2nd_power_series_ordinary')