| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 15001 |
\begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.170 |
|
| 15002 |
\begin{align*}
y^{\prime \prime }+2 k \,{\mathrm e}^{\mu x} y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 \mu x}+k \mu \,{\mathrm e}^{\mu x}+c \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
1.171 |
|
| 15003 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+\frac {\lambda y}{x}&=0 \\
y \left (1\right ) &= 0 \\
y \left ({\mathrm e}^{\pi }\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.171 |
|
| 15004 |
\begin{align*}
y^{\prime \prime }-4 y&=12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.171 |
|
| 15005 |
\begin{align*}
y^{\prime \prime }-\frac {5 y^{\prime }}{x}+\frac {5 y}{x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.171 |
|
| 15006 |
\begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.172 |
|
| 15007 |
\begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.172 |
|
| 15008 |
\begin{align*}
-2 y+y^{\prime }&=6 \,{\mathrm e}^{5 t} \\
y \left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.173 |
|
| 15009 |
\begin{align*}
-x^{3} y+x^{4} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.173 |
|
| 15010 |
\begin{align*}
2 x^{2} y^{\prime \prime }+7 y^{\prime } x -3 y&=\frac {\ln \left (x \right )}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.173 |
|
| 15011 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.173 |
|
| 15012 |
\begin{align*}
y^{\prime }&=y-y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.173 |
|
| 15013 |
\begin{align*}
2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.174 |
|
| 15014 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&=\sin \left (t \right )+\delta \left (t -3 \pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.174 |
|
| 15015 |
\begin{align*}
y^{\prime }&=1-\left (x -y\right )^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.174 |
|
| 15016 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.175 |
|
| 15017 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.175 |
|
| 15018 | \begin{align*}
-y+y^{\prime }&=t^{2}-2 t \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.175 |
|
| 15019 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.175 |
|
| 15020 |
\begin{align*}
n^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.176 |
|
| 15021 |
\begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.176 |
|
| 15022 |
\begin{align*}
\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.176 |
|
| 15023 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.176 |
|
| 15024 |
\begin{align*}
4 y^{\prime \prime }-y&=0 \\
y \left (-2\right ) &= 1 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.177 |
|
| 15025 |
\begin{align*}
y \left (1+{y^{\prime }}^{2}\right )&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.177 |
|
| 15026 |
\begin{align*}
2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.177 |
|
| 15027 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y&=\tan \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.177 |
|
| 15028 |
\begin{align*}
\left (x +a \right ) y+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.177 |
|
| 15029 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{2}+b \right ) x y^{\prime }+\left (3 a \,x^{2}+b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.177 |
|
| 15030 |
\begin{align*}
y^{\prime \prime }+\lambda ^{2} y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.177 |
|
| 15031 |
\begin{align*}
y^{\prime \prime }&=-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.178 |
|
| 15032 |
\begin{align*}
y^{\prime } x +a \,x^{\alpha } y^{2}+b y-c \,x^{\beta }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.178 |
|
| 15033 |
\begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.178 |
|
| 15034 |
\begin{align*}
y^{3} y^{\prime \prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.178 |
|
| 15035 |
\begin{align*}
x^{\prime }+x&={\mathrm e}^{-y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| 15036 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }&=5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| 15037 | \begin{align*}
\theta ^{\prime }&=-a \theta +{\mathrm e}^{b t} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.179 |
|
| 15038 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| 15039 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| 15040 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x^{2}-4 x +2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| 15041 |
\begin{align*}
y^{\prime } x&=x^{3}+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.180 |
|
| 15042 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.181 |
|
| 15043 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.181 |
|
| 15044 |
\begin{align*}
y^{\prime }+5 y&={\mathrm e}^{-3 x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.181 |
|
| 15045 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.181 |
|
| 15046 |
\begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.182 |
|
| 15047 |
\begin{align*}
y {y^{\prime }}^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.182 |
|
| 15048 |
\begin{align*}
y^{\prime }-1&={\mathrm e}^{x +2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.182 |
|
| 15049 |
\begin{align*}
2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (5 x^{2}+3 x +3\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.183 |
|
| 15050 |
\begin{align*}
\left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.183 |
|
| 15051 |
\begin{align*}
x^{\prime }&=\left (x-1\right )^{2} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.183 |
|
| 15052 |
\begin{align*}
y^{\prime }&=\frac {2}{x +2 y-3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.183 |
|
| 15053 |
\begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.183 |
|
| 15054 |
\begin{align*}
y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.184 |
|
| 15055 |
\begin{align*}
y^{\prime \prime } x +\left (2 x +2\right ) y^{\prime }+2 y&=8 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.184 |
|
| 15056 |
\begin{align*}
V^{\prime \prime }+\frac {2 V^{\prime }}{r}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.184 |
|
| 15057 | \begin{align*}
\left (2 x -b \right ) y^{\prime }&=y-a y {y^{\prime }}^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 1.184 |
|
| 15058 |
\begin{align*}
t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.185 |
|
| 15059 |
\begin{align*}
t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.185 |
|
| 15060 |
\begin{align*}
5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.185 |
|
| 15061 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.186 |
|
| 15062 |
\begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\
y \left (0\right ) &= {\frac {7}{9}} \\
y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{6}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.186 |
|
| 15063 |
\begin{align*}
y^{\prime }-2 y x&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.186 |
|
| 15064 |
\begin{align*}
y^{\prime }&=x^{2}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| 15065 |
\begin{align*}
y^{3} y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| 15066 |
\begin{align*}
10 x_{1}^{\prime }&=-x_{1}+x_{3} \\
10 x_{2}^{\prime }&=x_{1}-x_{2} \\
10 x_{3}^{\prime }&=x_{2}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| 15067 |
\begin{align*}
\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y&=x^{2} \left (x +1\right )^{2} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.187 |
|
| 15068 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }&=2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| 15069 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&=9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| 15070 |
\begin{align*}
y^{\prime }&=\left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| 15071 |
\begin{align*}
x_{1}^{\prime }&=2 x_{2} \\
x_{2}^{\prime }&=-2 x_{1} \\
x_{3}^{\prime }&=-3 x_{4} \\
x_{4}^{\prime }&=3 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
x_{3} \left (0\right ) &= 1 \\
x_{4} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.188 |
|
| 15072 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.188 |
|
| 15073 |
\begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y&=\frac {1}{1-x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.188 |
|
| 15074 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.188 |
|
| 15075 |
\begin{align*}
y^{\prime \prime }-9 y&=36 \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.188 |
|
| 15076 | \begin{align*}
y^{\prime \prime }-5 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.188 |
|
| 15077 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y&=15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.189 |
|
| 15078 |
\begin{align*}
y+y^{\prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.189 |
|
| 15079 |
\begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.189 |
|
| 15080 |
\begin{align*}
\left (1+y\right ) y^{\prime \prime }&=3 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.190 |
|
| 15081 |
\begin{align*}
-y+y^{\prime } x +x^{5} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.190 |
|
| 15082 |
\begin{align*}
a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.190 |
|
| 15083 |
\begin{align*}
y^{\prime }+x {y^{\prime }}^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.190 |
|
| 15084 |
\begin{align*}
\left (t +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.190 |
|
| 15085 |
\begin{align*}
2 t y+y^{\prime }&=1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.190 |
|
| 15086 |
\begin{align*}
y^{\prime \prime }-4 y&=12 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.191 |
|
| 15087 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.191 |
|
| 15088 |
\begin{align*}
9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
✓ |
✓ |
✓ |
✗ |
1.191 |
|
| 15089 |
\begin{align*}
y^{\prime \prime }&=\left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 \left (x -1\right ) x}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.191 |
|
| 15090 |
\begin{align*}
{y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.191 |
|
| 15091 |
\begin{align*}
y^{\prime }&=-\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y-a \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.191 |
|
| 15092 |
\begin{align*}
y^{\prime }&=y^{2}-2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.191 |
|
| 15093 |
\begin{align*}
3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= {\frac {17}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.191 |
|
| 15094 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (a \right ) &= b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.192 |
|
| 15095 | \begin{align*}
y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 1.192 |
|
| 15096 |
\begin{align*}
y+y^{\prime }&={\mathrm e}^{-t} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.192 |
|
| 15097 |
\begin{align*}
8 y&={y^{\prime }}^{2}+3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.192 |
|
| 15098 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.193 |
|
| 15099 |
\begin{align*}
y y^{\prime \prime }&=y^{2} y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.195 |
|
| 15100 |
\begin{align*}
4 y y^{\prime \prime }&=-4 y+3 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.195 |
|