2.3.151 Problems 15001 to 15100

Table 2.833: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

15001

25707

\begin{align*} y^{\prime }&=y^{{2}/{3}} \\ \end{align*}

1.170

15002

13940

\begin{align*} y^{\prime \prime }+2 k \,{\mathrm e}^{\mu x} y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 \mu x}+k \mu \,{\mathrm e}^{\mu x}+c \right ) y&=0 \\ \end{align*}

1.171

15003

14849

\begin{align*} y^{\prime \prime } x +y^{\prime }+\frac {\lambda y}{x}&=0 \\ y \left (1\right ) &= 0 \\ y \left ({\mathrm e}^{\pi }\right ) &= 0 \\ \end{align*}

1.171

15004

23087

\begin{align*} y^{\prime \prime }-4 y&=12 \\ \end{align*}

1.171

15005

23396

\begin{align*} y^{\prime \prime }-\frac {5 y^{\prime }}{x}+\frac {5 y}{x^{2}}&=0 \\ \end{align*}

1.171

15006

7310

\begin{align*} y^{\prime } y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

1.172

15007

11709

\begin{align*} x {y^{\prime }}^{2}-2 y^{\prime } y+a&=0 \\ \end{align*}

1.172

15008

3927

\begin{align*} -2 y+y^{\prime }&=6 \,{\mathrm e}^{5 t} \\ y \left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

1.173

15009

5838

\begin{align*} -x^{3} y+x^{4} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

1.173

15010

23541

\begin{align*} 2 x^{2} y^{\prime \prime }+7 y^{\prime } x -3 y&=\frac {\ln \left (x \right )}{x^{2}} \\ \end{align*}

1.173

15011

25751

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

1.173

15012

25802

\begin{align*} y^{\prime }&=y-y^{3} \\ \end{align*}

1.173

15013

2361

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

1.174

15014

18941

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=\sin \left (t \right )+\delta \left (t -3 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.174

15015

22591

\begin{align*} y^{\prime }&=1-\left (x -y\right )^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.174

15016

4061

\begin{align*} y^{\prime \prime } x -y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.175

15017

16475

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

1.175

15018

17141

\begin{align*} -y+y^{\prime }&=t^{2}-2 t \\ \end{align*}

1.175

15019

19200

\begin{align*} x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\ \end{align*}

1.175

15020

6062

\begin{align*} n^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

1.176

15021

17414

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

1.176

15022

20201

\begin{align*} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y&=0 \\ \end{align*}

1.176

15023

23382

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

1.176

15024

1264

\begin{align*} 4 y^{\prime \prime }-y&=0 \\ y \left (-2\right ) &= 1 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

1.177

15025

3296

\begin{align*} y \left (1+{y^{\prime }}^{2}\right )&=2 \\ \end{align*}

1.177

15026

5435

\begin{align*} 2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\ \end{align*}

1.177

15027

7662

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y&=\tan \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

1.177

15028

12358

\begin{align*} \left (x +a \right ) y+y^{\prime \prime } x&=0 \\ \end{align*}

1.177

15029

13748

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b \right ) x y^{\prime }+\left (3 a \,x^{2}+b \right ) y&=0 \\ \end{align*}

1.177

15030

18364

\begin{align*} y^{\prime \prime }+\lambda ^{2} y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

1.177

15031

7367

\begin{align*} y^{\prime \prime }&=-4 y \\ \end{align*}

1.178

15032

11407

\begin{align*} y^{\prime } x +a \,x^{\alpha } y^{2}+b y-c \,x^{\beta }&=0 \\ \end{align*}

1.178

15033

15619

\begin{align*} y^{\prime }&=y^{3} \\ y \left (-1\right ) &= 0 \\ \end{align*}

1.178

15034

20169

\begin{align*} y^{3} y^{\prime \prime }&=a \\ \end{align*}

1.178

15035

2961

\begin{align*} x^{\prime }+x&={\mathrm e}^{-y} \\ \end{align*}

1.179

15036

7988

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=5 \\ \end{align*}

1.179

15037

14252

\begin{align*} \theta ^{\prime }&=-a \theta +{\mathrm e}^{b t} \\ \end{align*}

1.179

15038

14698

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

1.179

15039

20498

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\ \end{align*}

1.179

15040

22765

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x^{2}-4 x +2 \\ \end{align*}

1.179

15041

22539

\begin{align*} y^{\prime } x&=x^{3}+2 y \\ \end{align*}

1.180

15042

13758

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y&=0 \\ \end{align*}

1.181

15043

15333

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\ \end{align*}

1.181

15044

16278

\begin{align*} y^{\prime }+5 y&={\mathrm e}^{-3 x} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.181

15045

18878

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) x^{2} \\ \end{align*}

1.181

15046

3432

\begin{align*} y^{\prime }&=y^{2}-y \\ \end{align*}

1.182

15047

11749

\begin{align*} y {y^{\prime }}^{2}-1&=0 \\ \end{align*}

1.182

15048

18065

\begin{align*} y^{\prime }-1&={\mathrm e}^{x +2 y} \\ \end{align*}

1.182

15049

1944

\begin{align*} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (5 x^{2}+3 x +3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.183

15050

5761

\begin{align*} \left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

1.183

15051

19667

\begin{align*} x^{\prime }&=\left (x-1\right )^{2} \\ x \left (0\right ) &= 1 \\ \end{align*}

1.183

15052

22596

\begin{align*} y^{\prime }&=\frac {2}{x +2 y-3} \\ \end{align*}

1.183

15053

24938

\begin{align*} y^{\prime }&=1-y^{2} \\ \end{align*}

1.183

15054

3592

\begin{align*} y^{\prime }&=2 y x \\ \end{align*}

1.184

15055

16698

\begin{align*} y^{\prime \prime } x +\left (2 x +2\right ) y^{\prime }+2 y&=8 \,{\mathrm e}^{2 x} \\ \end{align*}

1.184

15056

19878

\begin{align*} V^{\prime \prime }+\frac {2 V^{\prime }}{r}&=0 \\ \end{align*}

1.184

15057

20409

\begin{align*} \left (2 x -b \right ) y^{\prime }&=y-a y {y^{\prime }}^{2} \\ \end{align*}

1.184

15058

10035

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y&=0 \\ \end{align*}

1.185

15059

14829

\begin{align*} t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x&=0 \\ \end{align*}

1.185

15060

23368

\begin{align*} 5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

1.185

15061

217

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

1.186

15062

21921

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ y \left (0\right ) &= {\frac {7}{9}} \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{6}-1 \\ \end{align*}

1.186

15063

23175

\begin{align*} y^{\prime }-2 y x&=x^{2} \\ \end{align*}

1.186

15064

25

\begin{align*} y^{\prime }&=x^{2}-y \\ \end{align*}

1.187

15065

156

\begin{align*} y^{3} y^{\prime \prime }&=1 \\ \end{align*}

1.187

15066

586

\begin{align*} 10 x_{1}^{\prime }&=-x_{1}+x_{3} \\ 10 x_{2}^{\prime }&=x_{1}-x_{2} \\ 10 x_{3}^{\prime }&=x_{2}-x_{3} \\ \end{align*}

1.187

15067

3401

\begin{align*} \left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y&=x^{2} \left (x +1\right )^{2} \\ \end{align*}
Series expansion around \(x=0\).

1.187

15068

7082

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

1.187

15069

7306

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \\ \end{align*}

1.187

15070

25811

\begin{align*} y^{\prime }&=\left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \\ \end{align*}

1.187

15071

2746

\begin{align*} x_{1}^{\prime }&=2 x_{2} \\ x_{2}^{\prime }&=-2 x_{1} \\ x_{3}^{\prime }&=-3 x_{4} \\ x_{4}^{\prime }&=3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ x_{4} \left (0\right ) &= 0 \\ \end{align*}

1.188

15072

7595

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.188

15073

10227

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\frac {1}{1-x} \\ \end{align*}

1.188

15074

10428

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y&=0 \\ \end{align*}

1.188

15075

16588

\begin{align*} y^{\prime \prime }-9 y&=36 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

1.188

15076

22095

\begin{align*} y^{\prime \prime }-5 y&=0 \\ \end{align*}

1.188

15077

16681

\begin{align*} x^{2} y^{\prime \prime }-2 y&=15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \\ \end{align*}

1.189

15078

20372

\begin{align*} y+y^{\prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \\ \end{align*}

1.189

15079

23123

\begin{align*} y^{\prime }&=\sqrt {y} \\ y \left (1\right ) &= 1 \\ \end{align*}

1.189

15080

3270

\begin{align*} \left (1+y\right ) y^{\prime \prime }&=3 {y^{\prime }}^{2} \\ \end{align*}

1.190

15081

6283

\begin{align*} -y+y^{\prime } x +x^{5} y^{\prime \prime }&=0 \\ \end{align*}

1.190

15082

14973

\begin{align*} a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y&=0 \\ \end{align*}

1.190

15083

18078

\begin{align*} y^{\prime }+x {y^{\prime }}^{2}-y&=0 \\ \end{align*}

1.190

15084

24920

\begin{align*} \left (t +1\right ) y^{\prime }+y&=0 \\ \end{align*}

1.190

15085

25001

\begin{align*} 2 t y+y^{\prime }&=1 \\ y \left (0\right ) &= 1 \\ \end{align*}

1.190

15086

839

\begin{align*} y^{\prime \prime }-4 y&=12 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

1.191

15087

4032

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.191

15088

9440

\begin{align*} 9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y&=0 \\ \end{align*}
Series expansion around \(x=\infty \).

1.191

15089

11282

\begin{align*} y^{\prime \prime }&=\left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 \left (x -1\right ) x}\right ) y \\ \end{align*}

1.191

15090

11831

\begin{align*} {y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2}&=0 \\ \end{align*}

1.191

15091

13294

\begin{align*} y^{\prime }&=-\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y-a \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \\ \end{align*}

1.191

15092

15586

\begin{align*} y^{\prime }&=y^{2}-2 y \\ y \left (0\right ) &= 1 \\ \end{align*}

1.191

15093

17356

\begin{align*} 3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= {\frac {17}{3}} \\ \end{align*}

1.191

15094

69

\begin{align*} y^{\prime }&=y^{2} \\ y \left (a \right ) &= b \\ \end{align*}

1.192

15095

16800

\begin{align*} y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.192

15096

17164

\begin{align*} y+y^{\prime }&={\mathrm e}^{-t} \\ y \left (0\right ) &= -1 \\ \end{align*}

1.192

15097

24829

\begin{align*} 8 y&={y^{\prime }}^{2}+3 x^{2} \\ \end{align*}

1.192

15098

1745

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

1.193

15099

6443

\begin{align*} y y^{\prime \prime }&=y^{2} y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

1.195

15100

6488

\begin{align*} 4 y y^{\prime \prime }&=-4 y+3 {y^{\prime }}^{2} \\ \end{align*}

1.195