2.2.34 Problems 3301 to 3400

Table 2.81: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

3301

\begin{align*} 2 x^{2} y+{y^{\prime }}^{2}&=x^{3} y^{\prime } \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.283

3302

\begin{align*} y {y^{\prime }}^{2}&=y+3 y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

37.927

3303

\begin{align*} 8 x +1&=y {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

18.165

3304

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime }+1&=0 \\ \end{align*}

[_quadrature]

3.206

3305

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) x&=\left (x +y\right ) y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.834

3306

\begin{align*} x^{2}-3 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.116

3307

\begin{align*} 2 y^{\prime } x +y&=x {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.160

3308

\begin{align*} x&={y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

[_quadrature]

0.301

3309

\begin{align*} x&=y-{y^{\prime }}^{3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.916

3310

\begin{align*} x +2 y^{\prime } y&=x {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.983

3311

\begin{align*} 4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.975

3312

\begin{align*} x {y^{\prime }}^{3}&=y^{\prime } y+1 \\ \end{align*}

[_dAlembert]

0.390

3313

\begin{align*} y \left (1+{y^{\prime }}^{2}\right )&=2 y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.608

3314

\begin{align*} 2 x +x {y^{\prime }}^{2}&=2 y^{\prime } y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.982

3315

\begin{align*} x&=y^{\prime } y+{y^{\prime }}^{2} \\ \end{align*}

[_dAlembert]

3.284

3316

\begin{align*} 4 x {y^{\prime }}^{2}+2 y^{\prime } x&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.059

3317

\begin{align*} y&=y^{\prime } x \left (1+y^{\prime }\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.171

3318

\begin{align*} 2 x {y^{\prime }}^{3}+1&=y {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.905

3319

\begin{align*} {y^{\prime }}^{3}+x y^{\prime } y&=2 y^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.629

3320

\begin{align*} 3 {y^{\prime }}^{4} x&=y {y^{\prime }}^{3}+1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

5.277

3321

\begin{align*} 2 {y^{\prime }}^{5}+2 y^{\prime } x&=y \\ \end{align*}

[_dAlembert]

0.507

3322

\begin{align*} \frac {1}{{y^{\prime }}^{2}}+y^{\prime } x&=2 y \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

25.825

3323

\begin{align*} 2 y&=3 y^{\prime } x +4+2 \ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

7.436

3324

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.293

3325

\begin{align*} y&=y^{\prime } x +\frac {1}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.807

3326

\begin{align*} y&=y^{\prime } x -\sqrt {y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Clairaut]

1.688

3327

\begin{align*} y&=y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

4.648

3328

\begin{align*} y&=y^{\prime } x +\frac {3}{{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.147

3329

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{{2}/{3}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.621

3330

\begin{align*} y&=y^{\prime } x +{\mathrm e}^{y^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.743

3331

\begin{align*} \left (y-y^{\prime } x \right )^{2}&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.406

3332

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y-2&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.790

3333

\begin{align*} y^{2}-2 x y^{\prime } y+{y^{\prime }}^{2} \left (x^{2}-1\right )&=0 \\ \end{align*}

[_separable]

0.195

3334

\begin{align*} y^{\prime }&=\sqrt {1-y} \\ y \left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.108

3335

\begin{align*} y^{\prime }&=y x -x^{2} \\ y \left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[_linear]

0.317

3336

\begin{align*} y^{\prime }&=y^{2} x^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

[_separable]

0.171

3337

\begin{align*} y^{\prime }&=3 x +\frac {y}{x} \\ y \left (1\right ) &= 3 \\ \end{align*}
Series expansion around \(x=1\).

[_linear]

0.317

3338

\begin{align*} y^{\prime }&=\ln \left (y x \right ) \\ y \left (1\right ) &= 1 \\ \end{align*}
Series expansion around \(x=1\).

[‘y=_G(x,y’)‘]

0.312

3339

\begin{align*} y^{\prime }&=1+y^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}
Series expansion around \(x=1\).

[_quadrature]

0.161

3340

\begin{align*} y^{\prime }&=y^{2}+x^{2} \\ y \left (2\right ) &= 0 \\ \end{align*}
Series expansion around \(x=2\).

[[_Riccati, _special]]

0.258

3341

\begin{align*} y^{\prime }&=\sqrt {y x +1} \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[‘y=_G(x,y’)‘]

0.175

3342

\begin{align*} y^{\prime }&=\sin \left (y\right )+\cos \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\ \end{align*}
Series expansion around \(x=\frac {\pi }{2}\).

[‘y=_G(x,y’)‘]

0.211

3343

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.420

3344

\begin{align*} y^{\prime \prime }-2 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.471

3345

\begin{align*} y^{\prime \prime }+2 y^{\prime } y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.254

3346

\begin{align*} y^{\prime \prime }&=\sin \left (y\right ) \\ y \left (0\right ) &= \frac {\pi }{4} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.523

3347

\begin{align*} y^{\prime \prime }+\frac {{y^{\prime }}^{2}}{2}-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.283

3348

\begin{align*} y^{\prime \prime }&=\sin \left (y x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}
Series expansion around \(x=\frac {\pi }{2}\).

[NONE]

0.950

3349

\begin{align*} y^{\prime \prime }&=\cos \left (y x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}
Series expansion around \(x=\frac {\pi }{2}\).

[NONE]

0.893

3350

\begin{align*} 2 y^{\prime \prime } x +5 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.680

3351

\begin{align*} 3 x \left (3 x +2\right ) y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.969

3352

\begin{align*} x^{2} \left (x +4\right ) y^{\prime \prime }+7 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.862

3353

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.760

3354

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.783

3355

\begin{align*} 9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.753

3356

\begin{align*} \left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.868

3357

\begin{align*} 2 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+\left (3 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.787

3358

\begin{align*} 3 x^{2} y^{\prime \prime }+\left (-x^{2}+5 x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.852

3359

\begin{align*} 4 x^{2} y^{\prime \prime }+x \left (x^{2}-4\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.802

3360

\begin{align*} 4 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.077

3361

\begin{align*} 9 x^{2} y^{\prime \prime }+9 \left (-x^{2}+x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.845

3362

\begin{align*} 4 \left (1-x \right ) x^{2} y^{\prime \prime }+3 x \left (2 x +1\right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.829

3363

\begin{align*} 2 x^{2} \left (1-3 x \right ) y^{\prime \prime }+5 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.852

3364

\begin{align*} 4 x^{2} \left (x +1\right ) y^{\prime \prime }-5 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.805

3365

\begin{align*} x^{2} \left (x +4\right ) y^{\prime \prime }+x \left (x -1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.796

3366

\begin{align*} \left (8-x \right ) x^{2} y^{\prime \prime }+6 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.901

3367

\begin{align*} 2 x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.885

3368

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.666

3369

\begin{align*} 3 x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.678

3370

\begin{align*} x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 y^{\prime } x -\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.194

3371

\begin{align*} 2 y^{\prime \prime } x -\left (x^{3}+1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.946

3372

\begin{align*} y^{\prime \prime } x +y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.705

3373

\begin{align*} y^{\prime \prime } x +y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.557

3374

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 \left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.676

3375

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.641

3376

\begin{align*} x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.691

3377

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.609

3378

\begin{align*} x^{2} y^{\prime \prime }+x \left (x^{2}-1\right ) y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.681

3379

\begin{align*} x^{2} y^{\prime \prime }+x \left (2 x -1\right ) y^{\prime }+x \left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.905

3380

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.798

3381

\begin{align*} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (3 x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.838

3382

\begin{align*} \left (1-x \right ) x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.929

3383

\begin{align*} \left (-x^{2}+x \right ) y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.866

3384

\begin{align*} x^{2} y^{\prime \prime }+x \left (x -7\right ) y^{\prime }+\left (x +12\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.118

3385

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.185

3386

\begin{align*} x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.057

3387

\begin{align*} y^{\prime \prime } x +3 y^{\prime }-y&=x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.721

3388

\begin{align*} y^{\prime \prime } x +3 y^{\prime }-y&=x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.687

3389

\begin{align*} y^{\prime \prime } x +y^{\prime }-2 y x&=x^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.713

3390

\begin{align*} y^{\prime \prime } x -y^{\prime } x +y&=x^{3} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.665

3391

\begin{align*} \left (1-2 x \right ) y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{2}-x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.520

3392

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +12\right ) y&=x^{2}+x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

2.240

3393

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }+y&=-2 x^{2}+x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

1.010

3394

\begin{align*} 3 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=-x^{3}+x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

1.151

3395

\begin{align*} 9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y&=x^{4}+x^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.970

3396

\begin{align*} 9 x^{2} y^{\prime \prime }+10 y^{\prime } x +y&=x -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.822

3397

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=x^{3}+1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.987

3398

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=6 \left (-x^{2}+1\right )^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.416

3399

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+2 y&=x^{2} \left (2+x \right )^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.214

3400

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y&=x \left (x^{2}+x +1\right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

1.072