2.2.33 Problems 3201 to 3300

Table 2.79: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

3201

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{-2 x} \cos \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.167

3202

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime }&=x^{2} \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.254

3203

\begin{align*} y^{\prime \prime \prime \prime }-y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.606

3204

\begin{align*} y^{\prime \prime }+4 y&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

3205

\begin{align*} y^{\prime \prime }+y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.770

3206

\begin{align*} y^{\prime \prime }-y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

3207

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.217

3208

\begin{align*} y^{\left (5\right )}+y^{\prime \prime \prime \prime }&=x^{2} \\ \end{align*}

[[_high_order, _missing_y]]

0.151

3209

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }-2 y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

3210

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.316

3211

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.188

3212

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }&=x \cos \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.230

3213

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.653

3214

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x^{2} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

3215

\begin{align*} y^{\prime \prime }-y&=\sin \left (2 x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.578

3216

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=x^{3} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.812

3217

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.589

3218

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.700

3219

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.851

3220

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.639

3221

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +16 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.059

3222

\begin{align*} 4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.993

3223

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.417

3224

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x -18 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.290

3225

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y&=\ln \left (x^{2}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.073

3226

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.451

3227

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=1-x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.772

3228

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.323

3229

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x +\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.921

3230

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=\ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.962

3231

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +3 y&=\left (x -1\right ) \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

57.925

3232

\begin{align*} 4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right )+x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.347

3233

\begin{align*} 3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 y^{\prime } x +10 y&=\frac {4}{x^{2}} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.493

3234

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 y^{\prime } x -6 y&=\cos \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

1.983

3235

\begin{align*} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-y^{\prime } x +4 y&=\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.760

3236

\begin{align*} x^{\prime }-x&=\cos \left (t \right ) \\ y+y^{\prime }&=4 t \\ \end{align*}

system_of_ODEs

0.543

3237

\begin{align*} x^{\prime }+5 x&=3 t^{2} \\ y+y^{\prime }&={\mathrm e}^{3 t} \\ \end{align*}

system_of_ODEs

0.535

3238

\begin{align*} x^{\prime }+2 x&=3 t \\ x^{\prime }+2 y^{\prime }+y&=\cos \left (2 t \right ) \\ \end{align*}

system_of_ODEs

0.824

3239

\begin{align*} x^{\prime }-x+y&=2 \sin \left (t \right ) \\ x^{\prime }+y^{\prime }&=3 y-3 x \\ \end{align*}

system_of_ODEs

0.714

3240

\begin{align*} 2 x^{\prime }+3 x-y&={\mathrm e}^{t} \\ 5 x-3 y^{\prime }&=y+2 t \\ \end{align*}

system_of_ODEs

1.028

3241

\begin{align*} 5 y^{\prime }-3 x^{\prime }-5 y&=5 t \\ 3 x^{\prime }-5 y^{\prime }-2 x&=0 \\ \end{align*}

system_of_ODEs

0.322

3242

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=2 x+3 y \\ z^{\prime }&=3 y-2 z \\ \end{align*}

system_of_ODEs

0.622

3243

\begin{align*} y^{\prime \prime }&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.019

3244

\begin{align*} y^{\prime \prime }&=k^{2} y \\ \end{align*}

[[_2nd_order, _missing_x]]

2.597

3245

\begin{align*} x^{\prime \prime }+k^{2} x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.885

3246

\begin{align*} y^{3} y^{\prime \prime }+4&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.312

3247

\begin{align*} x^{\prime \prime }&=\frac {k^{2}}{x^{2}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

59.023

3248

\begin{align*} y^{\prime \prime } x&=x^{2}+1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.793

3249

\begin{align*} \left (1-x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

1.036

3250

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.888

3251

\begin{align*} y^{\prime \prime }&=y^{\prime }+{y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.678

3252

\begin{align*} y^{\prime \prime } x +x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.975

3253

\begin{align*} x^{\prime \prime }+t x^{\prime }&=t^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.820

3254

\begin{align*} x^{2} y^{\prime \prime }&=y^{\prime } x +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.580

3255

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6.421

3256

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.974

3257

\begin{align*} y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.314

3258

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2.132

3259

\begin{align*} y^{\prime \prime }&=y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.941

3260

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.653

3261

\begin{align*} y^{\prime } y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.865

3262

\begin{align*} y^{\prime \prime }+2 {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.727

3263

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.853

3264

\begin{align*} y y^{\prime \prime }+1&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.694

3265

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.273

3266

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.306

3267

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.691

3268

\begin{align*} y^{\prime \prime }+2 {y^{\prime }}^{2}&=2 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

5.490

3269

\begin{align*} y^{\prime \prime }+y^{\prime }&={y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.221

3270

\begin{align*} \left (1+y\right ) y^{\prime \prime }&=3 {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.190

3271

\begin{align*} y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\ y \left (0\right ) &= \frac {\pi }{4} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.006

3272

\begin{align*} 2 y^{\prime \prime }&={\mathrm e}^{y} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.671

3273

\begin{align*} y^{\prime \prime }&=y^{3} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= \frac {\sqrt {2}}{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.337

3274

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \cos \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.590

3275

\begin{align*} y y^{\prime \prime }-y^{2} y^{\prime }&={y^{\prime }}^{2} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.118

3276

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.692

3277

\begin{align*} y y^{\prime \prime }&=y^{3}+{y^{\prime }}^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.951

3278

\begin{align*} \left (1+{y^{\prime }}^{2}\right )^{2}&=y^{2} y^{\prime \prime } \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= \sqrt {2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10.884

3279

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.547

3280

\begin{align*} 2 y y^{\prime \prime }&=y^{3}+2 {y^{\prime }}^{2} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.843

3281

\begin{align*} x^{\prime \prime }-k^{2} x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= v_{0} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.207

3282

\begin{align*} y y^{\prime \prime }&=2 {y^{\prime }}^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= \sqrt {3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.832

3283

\begin{align*} \left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }&={\mathrm e}^{x} y^{\prime } \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

2.354

3284

\begin{align*} 4 y^{2}&=x^{2} {y^{\prime }}^{2} \\ \end{align*}

[_separable]

0.145

3285

\begin{align*} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1&=0 \\ \end{align*}

[_quadrature]

0.250

3286

\begin{align*} 1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 x^{2} y {y^{\prime }}^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

22.908

3287

\begin{align*} x \left (-1+{y^{\prime }}^{2}\right )&=2 y^{\prime } y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.964

3288

\begin{align*} \left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\ \end{align*}

[_quadrature]

2.892

3289

\begin{align*} x y {y^{\prime }}^{2}+\left (y x -1\right ) y^{\prime }&=y \\ \end{align*}

[‘y=_G(x,y’)‘]

26.915

3290

\begin{align*} y^{2} {y^{\prime }}^{2}+x y^{\prime } y-2 x^{2}&=0 \\ \end{align*}

[_separable]

0.295

3291

\begin{align*} y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}&=x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.897

3292

\begin{align*} {y^{\prime }}^{3}+\left (x +y-2 y x \right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right )&=0 \\ \end{align*}

[_quadrature]

0.266

3293

\begin{align*} y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (y^{2}+x^{2}\right )&=0 \\ \end{align*}

[_quadrature]

0.569

3294

\begin{align*} y&=y^{\prime } x \left (1+y^{\prime }\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.483

3295

\begin{align*} y&=x +3 \ln \left (y^{\prime }\right ) \\ \end{align*}

[_separable]

4.746

3296

\begin{align*} y \left (1+{y^{\prime }}^{2}\right )&=2 \\ \end{align*}

[_quadrature]

1.177

3297

\begin{align*} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.683

3298

\begin{align*} {y^{\prime }}^{2}+y^{2}&=1 \\ \end{align*}

[_quadrature]

0.675

3299

\begin{align*} x \left (-1+{y^{\prime }}^{2}\right )&=2 y^{\prime } y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.931

3300

\begin{align*} 4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.976