| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 14201 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.987 |
|
| 14202 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.987 |
|
| 14203 |
\begin{align*}
y x +x^{2}-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.987 |
|
| 14204 |
\begin{align*}
4 y^{\prime \prime }-9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.988 |
|
| 14205 |
\begin{align*}
x^{\prime }&=y-z \\
y^{\prime }&=z-x \\
z^{\prime }&=x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.988 |
|
| 14206 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| 14207 |
\begin{align*}
x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.989 |
|
| 14208 |
\begin{align*}
\left (4+2 x -y\right ) y^{\prime }+5+x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| 14209 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=18 \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| 14210 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| 14211 |
\begin{align*}
y^{\prime \prime }+3 y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi \sqrt {3}}{6}\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| 14212 |
\begin{align*}
y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.990 |
|
| 14213 |
\begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=3 \sin \left (t \right )-5 \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.990 |
|
| 14214 |
\begin{align*}
x \left (x -2\right )^{2} y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.990 |
|
| 14215 |
\begin{align*}
2 y^{\prime \prime } x +y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.990 |
|
| 14216 |
\begin{align*}
4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.990 |
|
| 14217 |
\begin{align*}
y^{\prime }+4 y&={\mathrm e}^{k x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.990 |
|
| 14218 | \begin{align*}
y^{\prime }&=\left (t -y\right )^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.990 |
|
| 14219 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.991 |
|
| 14220 |
\begin{align*}
y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.991 |
|
| 14221 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (c -1\right ) \left (a x +b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.991 |
|
| 14222 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2}-x_{3} \\
x_{2}^{\prime }&=-x_{1}+x_{2}+x_{3}+12 t \\
x_{3}^{\prime }&=x_{1}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.992 |
|
| 14223 |
\begin{align*}
\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y&=6 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.992 |
|
| 14224 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x+2 \sin \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.992 |
|
| 14225 |
\begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.992 |
|
| 14226 |
\begin{align*}
4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.993 |
|
| 14227 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.993 |
|
| 14228 |
\begin{align*}
{y^{\prime }}^{2}&=\left (4 y+1\right ) \left (y^{\prime }-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.993 |
|
| 14229 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.993 |
|
| 14230 |
\begin{align*}
y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.993 |
|
| 14231 |
\begin{align*}
\left (x +3\right ) y-2 x \left (2+x \right ) y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.994 |
|
| 14232 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.994 |
|
| 14233 |
\begin{align*}
y&=y {y^{\prime }}^{2}+2 y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.994 |
|
| 14234 |
\begin{align*}
y^{\prime }&=x^{3}+y^{3} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.994 |
|
| 14235 |
\begin{align*}
x^{\prime }&=-x-2 y \\
y^{\prime }&=2 x-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.994 |
|
| 14236 |
\begin{align*}
y+y^{\prime }&={\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.994 |
|
| 14237 |
\begin{align*}
a y^{\prime \prime }+b y^{\prime }+c y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.994 |
|
| 14238 | \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.995 |
|
| 14239 |
\begin{align*}
y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.995 |
|
| 14240 |
\begin{align*}
y^{\prime }&=2 y+3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.995 |
|
| 14241 |
\begin{align*}
x_{1}^{\prime }&=-x_{2} \\
x_{2}^{\prime }&=x_{1} \\
x_{3}^{\prime }&=x_{1}+2 x_{3}+x_{4} \\
x_{4}^{\prime }&=x_{2}+2 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| 14242 |
\begin{align*}
2 y-x^{3}&=y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| 14243 |
\begin{align*}
x^{\prime }&=x-4 y+\cos \left (2 t \right ) \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| 14244 |
\begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{2}+x_{2}+\frac {x_{3}}{2} \\
x_{2}^{\prime }&=x_{1}-x_{2}+x_{3}-\sin \left (t \right ) \\
x_{3}^{\prime }&=\frac {x_{1}}{2}+x_{2}-\frac {x_{3}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| 14245 |
\begin{align*}
{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| 14246 |
\begin{align*}
\left (x +3\right )^{2} y^{\prime \prime }+3 \left (x +3\right ) y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| 14247 |
\begin{align*}
m y^{\prime \prime }+k y&=\cos \left (\sqrt {\frac {k}{m}}\, t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| 14248 |
\begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.997 |
|
| 14249 |
\begin{align*}
{y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.997 |
|
| 14250 |
\begin{align*}
y^{\prime \prime } x +\frac {y^{\prime }}{2}+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.997 |
|
| 14251 |
\begin{align*}
y^{\prime }&=\frac {x -2 y+5}{-4-2 x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.997 |
|
| 14252 |
\begin{align*}
x^{\prime \prime }-4 x^{\prime }&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.997 |
|
| 14253 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.997 |
|
| 14254 |
\begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.997 |
|
| 14255 |
\begin{align*}
y^{\prime \prime }-9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.997 |
|
| 14256 |
\begin{align*}
y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.998 |
|
| 14257 | \begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.998 |
|
| 14258 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }&=4 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.998 |
|
| 14259 |
\begin{align*}
y^{\prime }&=\tan \left (x -\frac {y^{\prime }}{1+{y^{\prime }}^{2}}\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.998 |
|
| 14260 |
\begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.999 |
|
| 14261 |
\begin{align*}
x^{\prime }&=4 x+5 y+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\
y^{\prime }&=-2 x-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.999 |
|
| 14262 |
\begin{align*}
y^{\prime \prime }+9 y&=18 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.999 |
|
| 14263 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 a \,x^{2}+b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.999 |
|
| 14264 |
\begin{align*}
N^{\prime }&=N-9 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.999 |
|
| 14265 |
\begin{align*}
x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.999 |
|
| 14266 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.999 |
|
| 14267 |
\begin{align*}
y^{\prime }+\alpha y&={\mathrm e}^{\beta x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.000 |
|
| 14268 |
\begin{align*}
2 x^{2} y^{\prime \prime }-3 x \left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.000 |
|
| 14269 |
\begin{align*}
y^{\prime }&=\cos \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.000 |
|
| 14270 |
\begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.001 |
|
| 14271 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+2 x_{2}+x_{3} \\
x_{2}^{\prime }&=-2 x_{1}+2 x_{2}+2 x_{3} \\
x_{3}^{\prime }&=2 x_{1}-3 x_{2}-3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.001 |
|
| 14272 |
\begin{align*}
x^{\left (5\right )}+x&=0 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
1.001 |
|
| 14273 |
\begin{align*}
x^{\prime }&=x+3 y+2 t \\
y^{\prime }&=x-y+t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.001 |
|
| 14274 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{2 x} \left (3 \tan \left ({\mathrm e}^{x}\right )+{\mathrm e}^{x} \sec \left ({\mathrm e}^{x}\right )^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.001 |
|
| 14275 |
\begin{align*}
y^{\prime } y+x&=a \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.002 |
|
| 14276 | \begin{align*}
y^{\prime } x -3 y&=x^{4} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.003 |
|
| 14277 |
\begin{align*}
-3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.003 |
|
| 14278 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.003 |
|
| 14279 |
\begin{align*}
{\mathrm e}^{2 x -y}+{\mathrm e}^{y-2 x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.003 |
|
| 14280 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=g \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.004 |
|
| 14281 |
\begin{align*}
4 y^{\prime \prime } x +3 y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.005 |
|
| 14282 |
\begin{align*}
y^{\prime \prime } x +\left (2 x +3\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.005 |
|
| 14283 |
\begin{align*}
x \left (x +3\right ) y^{\prime \prime }-9 y^{\prime }-6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.005 |
|
| 14284 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }&=x +{\mathrm e}^{-4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.005 |
|
| 14285 |
\begin{align*}
y^{\prime }&=t +2 y \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.005 |
|
| 14286 |
\begin{align*}
y^{\prime \prime }+\alpha ^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.006 |
|
| 14287 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\left \{\begin {array}{cc} t & 0\le t \le 3 \\ t +2 & 3<t \end {array}\right . \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.006 |
|
| 14288 |
\begin{align*}
y^{\prime \prime }+\left (3 \sin \left (x \right )-\cot \left (x \right )\right ) y^{\prime }+2 y \sin \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.006 |
|
| 14289 |
\begin{align*}
3 x y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }&=3 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.006 |
|
| 14290 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.007 |
|
| 14291 |
\begin{align*}
x^{\prime }&=3 x-y \\
y^{\prime }&=x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.007 |
|
| 14292 |
\begin{align*}
4 x {y^{\prime }}^{2}+4 y^{\prime } y&=y^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.007 |
|
| 14293 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <5 \\ 0 & 5\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.007 |
|
| 14294 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| 14295 | \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+9 x_{4} \\
x_{2}^{\prime }&=4 x_{1}+2 x_{2}-10 x_{4} \\
x_{3}^{\prime }&=-x_{3}+8 x_{4} \\
x_{4}^{\prime }&=x_{4} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.008 |
|
| 14296 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=1+t^{2}+{\mathrm e}^{-2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| 14297 |
\begin{align*}
x^{\prime }&=x \left (2-x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| 14298 |
\begin{align*}
y^{\prime \prime }+16 y&=\csc \left (4 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| 14299 |
\begin{align*}
x_{1}^{\prime }&=-4 x_{1}+2 x_{2}-x_{3} \\
x_{2}^{\prime }&=-6 x_{1}-3 x_{3} \\
x_{3}^{\prime }&=\frac {8 x_{2}}{3}-2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| 14300 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.008 |
|