| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 14101 |
\begin{align*}
3 x \left (3 x +2\right ) y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.969 |
|
| 14102 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.969 |
|
| 14103 |
\begin{align*}
y^{\prime \prime }+y-a \cos \left (b x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.969 |
|
| 14104 |
\begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.969 |
|
| 14105 |
\begin{align*}
9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y&=x^{4}+x^{2} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.970 |
|
| 14106 |
\begin{align*}
y^{\prime }&=y \left (2-y\right ) \left (4-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| 14107 |
\begin{align*}
8 x^{2} y^{\prime \prime }+10 y^{\prime } x -\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| 14108 |
\begin{align*}
y^{\prime \prime } x +\left (-x +2\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| 14109 |
\begin{align*}
y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.970 |
|
| 14110 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+2&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| 14111 |
\begin{align*}
x^{\prime }&=7 x-y+6 z \\
y^{\prime }&=-10 x+4 y-12 z \\
z^{\prime }&=-2 x+y-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| 14112 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| 14113 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| 14114 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+x_{3} \\
x_{2}^{\prime }&=9 x_{1}-x_{2}+2 x_{3} \\
x_{3}^{\prime }&=-9 x_{1}+4 x_{2}-x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 17 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.971 |
|
| 14115 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.971 |
|
| 14116 |
\begin{align*}
x^{\prime }&=3 x-5 y \\
y^{\prime }&=4 x+8 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.971 |
|
| 14117 |
\begin{align*}
x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.971 |
|
| 14118 | \begin{align*}
y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (x^{n +m} a b +b \left (m +1\right ) x^{m -1}-a \,x^{n -1}\right ) y&=0 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 0.971 |
|
| 14119 |
\begin{align*}
b y+2 x^{2} \left (x +a \right ) y^{\prime }+x^{4} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.971 |
|
| 14120 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.971 |
|
| 14121 |
\begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.972 |
|
| 14122 |
\begin{align*}
9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.972 |
|
| 14123 |
\begin{align*}
{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| 14124 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| 14125 |
\begin{align*}
y^{\prime \prime }+9 y&=5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| 14126 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.973 |
|
| 14127 |
\begin{align*}
y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.973 |
|
| 14128 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\left (n +\frac {1}{2}\right )^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.973 |
|
| 14129 |
\begin{align*}
x^{\prime \prime }+x^{\prime }+x&={\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| 14130 |
\begin{align*}
x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime }&=x^{2} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.973 |
|
| 14131 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=\frac {1}{x^{2}+1} \\
y \left (\infty \right ) &= \frac {\pi ^{2}}{8} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.973 |
|
| 14132 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=a x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| 14133 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.973 |
|
| 14134 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+x_{3} \\
x_{2}^{\prime }&=9 x_{1}-x_{2}+2 x_{3} \\
x_{3}^{\prime }&=-9 x_{1}+4 x_{2}-x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 17 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| 14135 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| 14136 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| 14137 |
\begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{3}} \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.974 |
|
| 14138 | \begin{align*}
4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (x +3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.974 |
|
| 14139 |
\begin{align*}
y^{\prime \prime }+9 y&=f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| 14140 |
\begin{align*}
y^{\prime \prime } x +x&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.975 |
|
| 14141 |
\begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.975 |
|
| 14142 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.975 |
|
| 14143 |
\begin{align*}
8 x^{2} y^{\prime \prime }+10 y^{\prime } x +\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.975 |
|
| 14144 |
\begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.976 |
|
| 14145 |
\begin{align*}
y^{\prime }-6 y&={\mathrm e}^{6 t} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.976 |
|
| 14146 |
\begin{align*}
y^{\prime }&=-y \ln \left (y\right ) \\
y \left (0\right ) &= {\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.977 |
|
| 14147 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✓ |
0.977 |
|
| 14148 |
\begin{align*}
3 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.977 |
|
| 14149 |
\begin{align*}
\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.977 |
|
| 14150 |
\begin{align*}
y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.977 |
|
| 14151 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.977 |
|
| 14152 |
\begin{align*}
y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
0.977 |
|
| 14153 |
\begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.977 |
|
| 14154 |
\begin{align*}
y^{\prime }&=1+\left (y x +3 y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.977 |
|
| 14155 |
\begin{align*}
{y^{\prime }}^{2}-4 y^{\prime } x +2 y+2 x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.977 |
|
| 14156 |
\begin{align*}
t \left (1-t \right ) y^{\prime \prime }+\left (\gamma -\left (\alpha +\beta +1\right ) t \right ) y^{\prime }-\alpha \beta y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.978 |
|
| 14157 |
\begin{align*}
a y+y^{\prime }+2 y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.978 |
|
| 14158 | \begin{align*}
x^{\prime }&=a x+y \\
y^{\prime }&=-2 x+b y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.978 |
|
| 14159 |
\begin{align*}
2 y^{\prime }+2 y+w^{\prime }-w&=x +1 \\
y^{\prime }+3 y+w^{\prime }+w&=4 x +14 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.978 |
|
| 14160 |
\begin{align*}
y^{\prime } x +x^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.979 |
|
| 14161 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=1-2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.979 |
|
| 14162 |
\begin{align*}
x^{\prime }&=-2 x+y-11 \\
y^{\prime }&=-5 x+4 y-35 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.979 |
|
| 14163 |
\begin{align*}
x^{\prime }&=2 x-y+\cos \left (t \right ) \\
y^{\prime }&=5 x-2 y+\sin \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.979 |
|
| 14164 |
\begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.979 |
|
| 14165 |
\begin{align*}
\sin \left (t \right ) y^{\prime \prime }+y&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= y_{1} \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= y_{1} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.979 |
|
| 14166 |
\begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| 14167 |
\begin{align*}
\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.980 |
|
| 14168 |
\begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\
x^{\prime }\left (\frac {\pi }{4}\right ) &= 2 \sqrt {2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| 14169 |
\begin{align*}
\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right )&=\frac {\cos \left (2 \theta \right )}{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.980 |
|
| 14170 |
\begin{align*}
2 \left (x +5\right ) y-x \left (7+2 x \right ) y^{\prime }+2 x^{2} y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| 14171 |
\begin{align*}
y^{\prime }&=\frac {30 x^{3}+25 \sqrt {x}+25 y^{2}-20 x^{3} y-100 \sqrt {x}\, y+4 x^{6}+40 x^{{7}/{2}}+100 x}{25 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.980 |
|
| 14172 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| 14173 |
\begin{align*}
y^{\prime \prime }&=\frac {x +1}{x -1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| 14174 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| 14175 |
\begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.981 |
|
| 14176 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.981 |
|
| 14177 |
\begin{align*}
y^{\prime \prime }&=-\frac {4}{y^{3}} \\
y \left (2\right ) &= 4 \\
y^{\prime }\left (2\right ) &= 0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
0.981 |
|
| 14178 | \begin{align*}
2 x +x {y^{\prime }}^{2}&=2 y^{\prime } y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.982 |
|
| 14179 |
\begin{align*}
\left (x^{2}+x -2\right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=-2\). |
✓ |
✓ |
✓ |
✓ |
0.982 |
|
| 14180 |
\begin{align*}
x +2 y^{\prime } y&=x {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.983 |
|
| 14181 |
\begin{align*}
x {y^{\prime }}^{2}-3 y^{\prime } y+9 x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.983 |
|
| 14182 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+8 x_{2}+5 x_{3}+3 x_{4} \\
x_{2}^{\prime }&=2 x_{1}+16 x_{2}+10 x_{3}+6 x_{4} \\
x_{3}^{\prime }&=5 x_{1}-14 x_{2}-11 x_{3}-3 x_{4} \\
x_{4}^{\prime }&=-x_{1}-8 x_{2}-5 x_{3}-3 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.983 |
|
| 14183 |
\begin{align*}
\left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.983 |
|
| 14184 |
\begin{align*}
2 y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.983 |
|
| 14185 |
\begin{align*}
y^{\prime }+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.984 |
|
| 14186 |
\begin{align*}
y_{1}^{\prime }&=-3 y_{1}+3 y_{2}+y_{3} \\
y_{2}^{\prime }&=y_{1}-5 y_{2}-3 y_{3} \\
y_{3}^{\prime }&=-3 y_{1}+7 y_{2}+3 y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.984 |
|
| 14187 |
\begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+k y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.984 |
|
| 14188 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.984 |
|
| 14189 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.984 |
|
| 14190 |
\begin{align*}
x^{6} y^{\prime \prime }+x^{3} \left (3 x^{2}+a \right ) y^{\prime }+b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.984 |
|
| 14191 |
\begin{align*}
2 y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.984 |
|
| 14192 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.984 |
|
| 14193 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&=t \sin \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.985 |
|
| 14194 |
\begin{align*}
2 t^{2} y^{\prime \prime }-5 t y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.985 |
|
| 14195 |
\begin{align*}
y&=y^{\prime } x -\sqrt {y^{\prime }-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.986 |
|
| 14196 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.987 |
|
| 14197 | \begin{align*}
2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=x^{3}+1 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✗ | 0.987 |
|
| 14198 |
\begin{align*}
y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.987 |
|
| 14199 |
\begin{align*}
y \sin \left (x \right )^{2}-\left (\cot \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.987 |
|
| 14200 |
\begin{align*}
\cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.987 |
|