| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 13801 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.911 |
|
| 13802 |
\begin{align*}
y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 y x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.911 |
|
| 13803 |
\begin{align*}
y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.911 |
|
| 13804 |
\begin{align*}
t y^{\prime \prime }+2 \left (i t -k \right ) y^{\prime }-2 i k y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.911 |
|
| 13805 |
\begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.911 |
|
| 13806 |
\begin{align*}
y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y&={\mathrm e}^{x^{2}} \sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.912 |
|
| 13807 |
\begin{align*}
x^{\prime }&=-2 x-2 y+4 z \\
y^{\prime }&=-2 x+y+2 z \\
z^{\prime }&=-4 x-2 y+6 z+{\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.912 |
|
| 13808 |
\begin{align*}
\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y&=\left (x +1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.913 |
|
| 13809 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-2 y-5 z+3 \\
z^{\prime }&=y+2 z \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
z \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.913 |
|
| 13810 |
\begin{align*}
y^{\prime \prime }+2&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.913 |
|
| 13811 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+8 x&=f \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.914 |
|
| 13812 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.914 |
|
| 13813 |
\begin{align*}
y^{\prime }&=y^{3}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.914 |
|
| 13814 |
\begin{align*}
y_{1}^{\prime }&=2 y_{1}+y_{2}-y_{3} \\
y_{2}^{\prime }&=y_{2}+y_{3} \\
y_{3}^{\prime }&=y_{1}+y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| 13815 |
\begin{align*}
\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| 13816 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right )^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| 13817 |
\begin{align*}
u^{\prime \prime }+\left (\tan \left (x \right )-2 \cos \left (x \right )\right ) u^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| 13818 | \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.915 |
|
| 13819 |
\begin{align*}
y^{\prime }&=y+2 t \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| 13820 |
\begin{align*}
y^{\prime \prime }+\omega _{n}^{2} y&={\mathrm e}^{i \omega t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| 13821 |
\begin{align*}
x&=y-{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.916 |
|
| 13822 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.916 |
|
| 13823 |
\begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.916 |
|
| 13824 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+2 x_{2}+4 x_{3}+2 \,{\mathrm e}^{8 t} \\
x_{2}^{\prime }&=2 x_{1}+2 x_{3}+{\mathrm e}^{8 t} \\
x_{3}^{\prime }&=4 x_{1}+2 x_{2}+3 x_{3}+2 \,{\mathrm e}^{8 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.917 |
|
| 13825 |
\begin{align*}
\left (-x^{2}+a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.917 |
|
| 13826 |
\begin{align*}
c y^{\prime }&=a x +b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.917 |
|
| 13827 |
\begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} -4 t +8 \pi & 0<t <2 \pi \\ 0 & 2<t \end {array}\right . \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.917 |
|
| 13828 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }&=8 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.917 |
|
| 13829 |
\begin{align*}
2 x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.917 |
|
| 13830 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }-3 y&=\operatorname {Heaviside}\left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.918 |
|
| 13831 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2} \\
x_{2}^{\prime }&=x_{1}+3 x_{2}-x_{3} \\
x_{3}^{\prime }&=-x_{1}+2 x_{2}+3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.919 |
|
| 13832 |
\begin{align*}
1+2 y-2 t y^{\prime }&=\frac {1}{{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.919 |
|
| 13833 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (\frac {1}{2} x +x^{2}\right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| 13834 |
\begin{align*}
\left (4+2 x -y\right ) y^{\prime }+5+x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| 13835 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| 13836 |
\begin{align*}
a y^{\prime \prime }+2 b y^{\prime }+c y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| 13837 | \begin{align*}
y^{\prime \prime } x -\left (2+x \right ) y^{\prime }+2 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.920 |
|
| 13838 |
\begin{align*}
u^{\prime \prime }+2 a u^{\prime }+\omega ^{2} u&=c \cos \left (\omega t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| 13839 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| 13840 |
\begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ \cos \left (t \right ) & \pi \le t \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13841 |
\begin{align*}
{y^{\prime }}^{2}&=1-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13842 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13843 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }+\left (1+3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13844 |
\begin{align*}
3 {y^{\prime }}^{2}+4 y^{\prime } x +x^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13845 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13846 |
\begin{align*}
y^{\prime \prime }&=y^{\prime } \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13847 |
\begin{align*}
y^{\prime \prime }-7 y^{\prime }&=\left (x -1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13848 |
\begin{align*}
y^{\prime \prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13849 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13850 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| 13851 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }+\left (2 x +\frac {2}{x}\right ) y^{\prime }+2 x^{2} y&=\frac {4 x^{2}+2 x +10}{x^{4}} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.921 |
|
| 13852 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.922 |
|
| 13853 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{3} b +b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.922 |
|
| 13854 |
\begin{align*}
t^{2} x^{\prime \prime }+t x^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.922 |
|
| 13855 |
\begin{align*}
y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.922 |
|
| 13856 | \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=10 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.923 |
|
| 13857 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.923 |
|
| 13858 |
\begin{align*}
y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.923 |
|
| 13859 |
\begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| 13860 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=\left (-x^{2}+1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.924 |
|
| 13861 |
\begin{align*}
{y^{\prime }}^{2} \left (1-b^{2} {y^{\prime }}^{2}\right )+2 b^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2}-b^{2} y^{2}\right ) {y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.924 |
|
| 13862 |
\begin{align*}
\left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=8 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.924 |
|
| 13863 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| 13864 |
\begin{align*}
x^{\prime }&=6 x-7 y+10 \\
y^{\prime }&=x-2 y-2 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| 13865 |
\begin{align*}
a x y^{\prime \prime }+b y^{\prime }+c y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.924 |
|
| 13866 |
\begin{align*}
y^{\prime \prime }&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| 13867 |
\begin{align*}
v^{\prime \prime }+\frac {2 v^{\prime }}{r}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| 13868 |
\begin{align*}
x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.924 |
|
| 13869 |
\begin{align*}
x^{\prime }&=3 x-y \\
y^{\prime }&=-x+2 y-z \\
z^{\prime }&=-y+3 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| 13870 |
\begin{align*}
-x^{\prime }+2 y^{\prime }&=x+3 y+{\mathrm e}^{t} \\
3 x^{\prime }-4 y^{\prime }&=x-15 y+{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| 13871 |
\begin{align*}
2 {y^{\prime }}^{4}-y^{\prime } y-2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| 13872 |
\begin{align*}
y^{\prime \prime }&=f \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.925 |
|
| 13873 |
\begin{align*}
y^{\prime }&={\mathrm e}^{a x}+a y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| 13874 |
\begin{align*}
2 y^{\prime \prime }+y^{\prime }&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| 13875 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| 13876 | \begin{align*}
y^{\prime \prime }+4 y&=t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.925 |
|
| 13877 |
\begin{align*}
x_{1}^{\prime }&=x_{3} \\
x_{2}^{\prime }&=x_{4} \\
x_{3}^{\prime }&=-2 x_{1}+2 x_{2}-3 x_{3}+x_{4} \\
x_{4}^{\prime }&=2 x_{1}-2 x_{2}+x_{3}-3 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.926 |
|
| 13878 |
\begin{align*}
w^{\prime }&=\left (3-w\right ) \left (w+1\right ) \\
w \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.926 |
|
| 13879 |
\begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {x_{3}}{2}+1 \\
x_{2}^{\prime }&=-x_{1}-2 x_{2}+x_{3}+t \\
x_{3}^{\prime }&=\frac {x_{1}}{2}+\frac {x_{2}}{2}-\frac {3 x_{3}}{2}+11 \,{\mathrm e}^{-3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.926 |
|
| 13880 |
\begin{align*}
4 y^{\prime \prime }-25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.926 |
|
| 13881 |
\begin{align*}
x_{1}^{\prime }&=-10 x_{1}+x_{2}+7 x_{3} \\
x_{2}^{\prime }&=-9 x_{1}+4 x_{2}+5 x_{3} \\
x_{3}^{\prime }&=-17 x_{1}+x_{2}+12 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 5 \\
x_{2} \left (0\right ) &= 2 \\
x_{3} \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.926 |
|
| 13882 |
\begin{align*}
4 x {y^{\prime }}^{2}-3 y^{\prime } y+3&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.927 |
|
| 13883 |
\begin{align*}
\left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }+\left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}-x \left (a^{2}-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.927 |
|
| 13884 |
\begin{align*}
z^{\prime \prime }+2 z^{\prime }&=3 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.927 |
|
| 13885 |
\begin{align*}
y^{\prime \prime }-\frac {2 y^{\prime }}{y^{3}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.927 |
|
| 13886 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.927 |
|
| 13887 |
\begin{align*}
x_{1}^{\prime }&=-x_{1}-x_{2}+1 \\
x_{2}^{\prime }&=2 x_{1}-x_{2}+5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| 13888 |
\begin{align*}
x -y-1+\left (y-x +2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| 13889 |
\begin{align*}
b y+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.928 |
|
| 13890 |
\begin{align*}
x^{\prime }+5 x&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| 13891 |
\begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| 13892 |
\begin{align*}
y+y^{\prime }&=\left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.928 |
|
| 13893 |
\begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| 13894 |
\begin{align*}
y^{\prime }&=2 y x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.929 |
|
| 13895 | \begin{align*}
t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.929 |
|
| 13896 |
\begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.929 |
|
| 13897 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.929 |
|
| 13898 |
\begin{align*}
m y^{\prime \prime }+c y^{\prime }+k y&=F_{0} \cos \left (\omega t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.930 |
|
| 13899 |
\begin{align*}
b x y+a y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.930 |
|
| 13900 |
\begin{align*}
y^{\prime \prime }&=\sqrt {1-{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.930 |
|