| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 13701 |
\begin{align*}
y^{\prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| 13702 |
\begin{align*}
3 y^{\prime \prime }-2 y^{\prime }+4 y&=x \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| 13703 |
\begin{align*}
\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.894 |
|
| 13704 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| 13705 |
\begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} x & 0\le x \le \pi \\ 0 & \pi <x \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| 13706 |
\begin{align*}
x_{1}^{\prime }&=5 x_{1}+5 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-6 x_{1}-6 x_{2}-5 x_{3} \\
x_{3}^{\prime }&=6 x_{1}+6 x_{2}+5 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.895 |
|
| 13707 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.895 |
|
| 13708 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.895 |
|
| 13709 |
\begin{align*}
y^{\prime \prime }+\left (b \,x^{2} a +b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.895 |
|
| 13710 |
\begin{align*}
x^{2} y^{\prime \prime }&=2 y^{\prime } x +{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.895 |
|
| 13711 |
\begin{align*}
\left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.895 |
|
| 13712 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-3 y&=\cos \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.895 |
|
| 13713 |
\begin{align*}
x_{1}^{\prime }&=35 x_{1}-12 x_{2}+4 x_{3}+30 x_{4} \\
x_{2}^{\prime }&=22 x_{1}-8 x_{2}+3 x_{3}+19 x_{4} \\
x_{3}^{\prime }&=-10 x_{1}+3 x_{2}-9 x_{4} \\
x_{4}^{\prime }&=-27 x_{1}+9 x_{2}-3 x_{3}-23 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.896 |
|
| 13714 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.896 |
|
| 13715 |
\begin{align*}
2 y^{\prime \prime } x +y^{\prime }-y&=x +1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.896 |
|
| 13716 |
\begin{align*}
\left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (x^{n -1} a n +b m \,x^{m -1}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.896 |
|
| 13717 |
\begin{align*}
x^{\prime }-k^{2} x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.896 |
|
| 13718 | \begin{align*}
y^{\prime }-3 y&=6 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.896 |
|
| 13719 |
\begin{align*}
y x +y^{\prime } x&=1-y \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.897 |
|
| 13720 |
\begin{align*}
y^{\prime \prime }&=2 y^{\prime }-6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.897 |
|
| 13721 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.897 |
|
| 13722 |
\begin{align*}
4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.898 |
|
| 13723 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| 13724 |
\begin{align*}
y^{\prime }&=\sin \left (y x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.898 |
|
| 13725 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| 13726 |
\begin{align*}
y^{\prime }-x&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| 13727 |
\begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=z-x \\
z^{\prime }&=x+3 y+z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| 13728 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3}+{\mathrm e}^{t} \\
x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\
x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3}-{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.899 |
|
| 13729 |
\begin{align*}
x^{\prime }-5 x+3 y&=2 \,{\mathrm e}^{3 t} \\
-x+y^{\prime }-y&=5 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.899 |
|
| 13730 |
\begin{align*}
y^{\prime }+{y^{\prime }}^{3}+2 y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.899 |
|
| 13731 |
\begin{align*}
-y+y^{\prime }&=\delta \left (t -2\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.899 |
|
| 13732 |
\begin{align*}
\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.900 |
|
| 13733 |
\begin{align*}
x&=t x^{\prime }+\frac {1}{x^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.900 |
|
| 13734 |
\begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y&={\mathrm e}^{x} \left (\left (7+8 x \right ) \cos \left (2 x \right )+\left (8-4 x \right ) \sin \left (2 x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| 13735 |
\begin{align*}
\left (8-x \right ) x^{2} y^{\prime \prime }+6 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| 13736 |
\begin{align*}
y^{\prime \prime } x&=x +y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| 13737 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| 13738 | \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=3 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.901 |
|
| 13739 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| 13740 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.902 |
|
| 13741 |
\begin{align*}
y^{\prime \prime }+y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.902 |
|
| 13742 |
\begin{align*}
x^{3} x^{\prime \prime }+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.902 |
|
| 13743 |
\begin{align*}
y^{\prime }+3 y+2 z&=0 \\
z^{\prime }+2 y-4 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.902 |
|
| 13744 |
\begin{align*}
y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )}&=\frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.902 |
|
| 13745 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -\left (\nu ^{2}+x^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| 13746 |
\begin{align*}
V^{\prime \prime }+\frac {V^{\prime }}{r}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| 13747 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| 13748 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| 13749 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
✓ |
✓ |
✓ |
✗ |
0.903 |
|
| 13750 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime }&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| 13751 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| 13752 |
\begin{align*}
y^{\prime }&=y \left (y-2\right ) \left (y-1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| 13753 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| 13754 |
\begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| 13755 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+7 \,{\mathrm e}^{x} y^{\prime } x +9 \left (1+\tan \left (x \right )\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| 13756 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=-x +2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| 13757 | \begin{align*}
2 \cot \left (x \right ) y^{\prime }+2 \tan \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.904 |
|
| 13758 |
\begin{align*}
\frac {x y^{\prime \prime }}{1+y}+\frac {y^{\prime } y-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}}&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.904 |
|
| 13759 |
\begin{align*}
\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.904 |
|
| 13760 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x}+x \cos \left (y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| 13761 |
\begin{align*}
y^{\prime \prime }+3 t \left (1-t \right ) y^{\prime }+\frac {\left (1-{\mathrm e}^{t}\right ) y}{t}&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| 13762 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (2 x -1\right ) y^{\prime }+x \left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.905 |
|
| 13763 |
\begin{align*}
2 y^{\prime \prime } x -y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.905 |
|
| 13764 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.905 |
|
| 13765 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y&=0 \\
y \left (1\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.905 |
|
| 13766 |
\begin{align*}
\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.905 |
|
| 13767 |
\begin{align*}
y^{\prime }-6 y&={\mathrm e}^{6 t} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.905 |
|
| 13768 |
\begin{align*}
y^{\prime \prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.906 |
|
| 13769 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.906 |
|
| 13770 |
\begin{align*}
y_{1}^{\prime }&=-2 y_{1}+2 y_{2}+y_{3}+{\mathrm e}^{-2 t} \\
y_{2}^{\prime }&=-y_{2} \\
y_{3}^{\prime }&=2 y_{1}-2 y_{2}-y_{3}-{\mathrm e}^{-2 t} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 2 \\
y_{2} \left (0\right ) &= 1 \\
y_{3} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.906 |
|
| 13771 |
\begin{align*}
y^{\prime }&=y^{2}+y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.906 |
|
| 13772 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.907 |
|
| 13773 |
\begin{align*}
y-{\mathrm e}^{x}+y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.907 |
|
| 13774 |
\begin{align*}
2 y+y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.907 |
|
| 13775 |
\begin{align*}
x^{\prime }&=7 x-y+6 z \\
y^{\prime }&=-10 x+4 y-12 z \\
z^{\prime }&=-2 x+y-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.907 |
|
| 13776 | \begin{align*}
{y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\
\end{align*} | ✓ | ✓ | ✗ | ✗ | 0.907 |
|
| 13777 |
\begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| 13778 |
\begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| 13779 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (\frac {x}{3}\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| 13780 |
\begin{align*}
\left (-a \,x^{2}+2\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| 13781 |
\begin{align*}
y^{\prime } x +y x +y-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| 13782 |
\begin{align*}
x^{\prime }&=-10 x+y+7 z \\
y^{\prime }&=-9 x+4 y+5 z \\
z^{\prime }&=-17 x+y+12 z \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.908 |
|
| 13783 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }&=-18 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| 13784 |
\begin{align*}
x^{\prime \prime }&=\frac {1}{\left (t +1\right )^{3}} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.909 |
|
| 13785 |
\begin{align*}
3 y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.909 |
|
| 13786 |
\begin{align*}
2 \left (1-y\right )^{2} y-2 x \left (1-y\right ) y^{\prime }+2 x^{2} {y^{\prime }}^{2}+x^{2} \left (1-y\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.909 |
|
| 13787 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.909 |
|
| 13788 |
\begin{align*}
x^{\prime }&=x+y-z \\
y^{\prime }&=y+z-x \\
z^{\prime }&=x-y+z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.909 |
|
| 13789 |
\begin{align*}
y&=y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.909 |
|
| 13790 |
\begin{align*}
x^{\prime }&=x+2 y+4 \\
y^{\prime }&=-2 x+y-3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.909 |
|
| 13791 |
\begin{align*}
y^{\prime }&=t +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.909 |
|
| 13792 |
\begin{align*}
y^{\prime }&=2 y-y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.910 |
|
| 13793 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.910 |
|
| 13794 |
\begin{align*}
x^{\prime }&=3 x-2 y+24 \sin \left (t \right ) \\
y^{\prime }&=9 x-3 y+12 \cos \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.910 |
|
| 13795 | \begin{align*}
x^{\prime }&=x+2 y+t -1 \\
y^{\prime }&=3 x+2 y-5 t -2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.910 |
|
| 13796 |
\begin{align*}
y^{\prime }-7 y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.910 |
|
| 13797 |
\begin{align*}
y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+32 y^{\prime \prime }+64 y^{\prime }+39 y&={\mathrm e}^{-2 x} \left (\left (4-15 x \right ) \cos \left (3 x \right )-\left (4+15 x \right ) \sin \left (3 x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.911 |
|
| 13798 |
\begin{align*}
x^{\prime }&=x+y+{\mathrm e}^{t} \\
y^{\prime }&=x-y-{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.911 |
|
| 13799 |
\begin{align*}
\left (a y+b \right ) y^{\prime \prime }+c {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.911 |
|
| 13800 |
\begin{align*}
y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.911 |
|