| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 11801 |
\begin{align*}
y^{\prime }&=a x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| 11802 |
\begin{align*}
x^{\prime }&=3-2 y \\
y^{\prime }&=2 x-2 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| 11803 |
\begin{align*}
y^{\prime }&=2 \cos \left (x \right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| 11804 |
\begin{align*}
x^{\prime \prime }-4 x^{\prime }+13 x&=20 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| 11805 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-6 y^{\prime } x -4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| 11806 |
\begin{align*}
y^{\prime \prime }+y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| 11807 |
\begin{align*}
x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.655 |
|
| 11808 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.656 |
|
| 11809 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.656 |
|
| 11810 |
\begin{align*}
y&=y^{\prime } x +a x \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.656 |
|
| 11811 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=-8 x_{1}-5 x_{2}-3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.656 |
|
| 11812 |
\begin{align*}
y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.656 |
|
| 11813 |
\begin{align*}
y^{\prime }&=-y+3 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.656 |
|
| 11814 |
\begin{align*}
\left (2 x^{3}+6 x^{2}\right ) y^{\prime \prime }+21 y^{\prime } x +9 \left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| 11815 |
\begin{align*}
4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| 11816 |
\begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y&=\sin \left (x \right )-{\mathrm e}^{4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| 11817 |
\begin{align*}
y^{\prime \prime }+y&=\delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| 11818 | \begin{align*}
x^{\prime \prime }+4 x&=\cos \left (t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.657 |
|
| 11819 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| 11820 |
\begin{align*}
y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| 11821 |
\begin{align*}
x^{\prime }&=-2 x-3 y \\
y^{\prime }&=-3 x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| 11822 |
\begin{align*}
2 y^{\prime \prime }-3 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11823 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+2 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-5 x_{1}-4 x_{2}-2 x_{3} \\
x_{3}^{\prime }&=5 x_{1}+5 x_{2}+3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11824 |
\begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+13 y^{\prime \prime }-19 y^{\prime }+10 y&={\mathrm e}^{x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11825 |
\begin{align*}
y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }+2 y&=30 \cos \left (x \right )-10 \sin \left (x \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -4 \\
y^{\prime \prime }\left (0\right ) &= 16 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11826 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (x \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11827 |
\begin{align*}
x {y^{\prime }}^{2}+y^{\prime \prime } x&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11828 |
\begin{align*}
\left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=3 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.658 |
|
| 11829 |
\begin{align*}
2 \left (1-x \right ) x y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11830 |
\begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11831 |
\begin{align*}
y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11832 |
\begin{align*}
5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.658 |
|
| 11833 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11834 |
\begin{align*}
y^{\prime \prime } x&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11835 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=2 y+z \\
z^{\prime }&=x+3 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11836 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= -1 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11837 | \begin{align*}
y^{\prime }&=x +y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.658 |
|
| 11838 |
\begin{align*}
y^{\prime }&=4 y-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| 11839 |
\begin{align*}
x^{\prime \prime }+100 x&=225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \\
x \left (0\right ) &= 375 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| 11840 |
\begin{align*}
3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (1+3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| 11841 |
\begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{x}+\sin \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| 11842 |
\begin{align*}
\sqrt {y}\, y^{\prime \prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.659 |
|
| 11843 |
\begin{align*}
y^{\prime \prime }&=\frac {18 y}{\left (2 x +1\right )^{2} \left (x^{2}+x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.659 |
|
| 11844 |
\begin{align*}
y^{\prime }&=y \ln \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| 11845 |
\begin{align*}
4 x^{\prime }+9 y^{\prime }+11 x+31 y&={\mathrm e}^{t} \\
3 x^{\prime }+7 y^{\prime }+8 x+24 y&={\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| 11846 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -\lambda y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| 11847 |
\begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| 11848 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=-2 x +2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| 11849 |
\begin{align*}
y^{\prime \prime }+9 y&=\sin \left (x \right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| 11850 |
\begin{align*}
\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| 11851 |
\begin{align*}
y x -2 y^{2}-\left (x^{2}-3 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| 11852 |
\begin{align*}
2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| 11853 |
\begin{align*}
y^{\prime \prime }&=-\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.660 |
|
| 11854 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| 11855 |
\begin{align*}
x^{\prime \prime }+9 x&=\sin \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| 11856 |
\begin{align*}
y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| 11857 | \begin{align*}
y&=y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.660 |
|
| 11858 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| 11859 |
\begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| 11860 |
\begin{align*}
2 t^{2} y^{\prime \prime }+3 t y^{\prime }-\left (t +1\right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| 11861 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x^{2} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| 11862 |
\begin{align*}
6 y x +\left (-x^{3}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| 11863 |
\begin{align*}
x^{3} y^{\prime \prime }+y \sin \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.661 |
|
| 11864 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x -\left (2 x^{3}-4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| 11865 |
\begin{align*}
2 x^{\prime }+y^{\prime }-x-y&=1 \\
x^{\prime }+y^{\prime }+2 x-y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| 11866 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=\delta \left (t -3\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| 11867 |
\begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| 11868 |
\begin{align*}
y^{\prime \prime \prime }&=2 \sqrt {y^{\prime \prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| 11869 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=3 x^{{3}/{2}} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.661 |
|
| 11870 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| 11871 |
\begin{align*}
x_{1}^{\prime }&=5 x_{1}+x_{2}+3 x_{3} \\
x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime }&=3 x_{1}+x_{2}+5 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.662 |
|
| 11872 |
\begin{align*}
y^{\prime }&=\left (y^{2}+x^{2}\right )^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.662 |
|
| 11873 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.662 |
|
| 11874 |
\begin{align*}
y^{\prime \prime }+y&=2 \sin \left (2 x \right ) \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.662 |
|
| 11875 |
\begin{align*}
y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.662 |
|
| 11876 |
\begin{align*}
{\mathrm e}^{-y} y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.662 |
|
| 11877 | \begin{align*}
\left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y&=2 \,{\mathrm e}^{x} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.662 |
|
| 11878 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=2 \sinh \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.662 |
|
| 11879 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (2 x -1\right ) y&=0 \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= -2 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✓ |
0.662 |
|
| 11880 |
\begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.662 |
|
| 11881 |
\begin{align*}
18 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| 11882 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| 11883 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| 11884 |
\begin{align*}
\left (x -2\right ) y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=-2\). |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| 11885 |
\begin{align*}
y^{\prime \prime }+\left (x -1\right ) y&={\mathrm e}^{x} \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✗ |
0.663 |
|
| 11886 |
\begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| 11887 |
\begin{align*}
x^{\prime }&=-3 x+5 y \\
y^{\prime }&=-x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| 11888 |
\begin{align*}
t^{2} y^{\prime \prime }+t^{2} y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| 11889 |
\begin{align*}
y^{\prime }&=x -y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| 11890 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.664 |
|
| 11891 |
\begin{align*}
2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| 11892 |
\begin{align*}
y^{\prime \prime }+9 y&=\frac {36}{4-\cos \left (3 x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| 11893 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+x \left (x^{3}-2 y\right ) y^{\prime }-\left (2 x^{3}-y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.664 |
|
| 11894 |
\begin{align*}
a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| 11895 |
\begin{align*}
y^{\prime }+2 y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| 11896 | \begin{align*}
\left (1+y^{2}\right ) y^{\prime \prime }&=\left (a +3 y\right ) {y^{\prime }}^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.664 |
|
| 11897 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| 11898 |
\begin{align*}
\left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.664 |
|
| 11899 |
\begin{align*}
y^{\prime \prime }&=-\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| 11900 |
\begin{align*}
y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=1-\operatorname {Heaviside}\left (t -\pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.664 |
|