| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 11701 |
\begin{align*}
5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.646 |
|
| 11702 |
\begin{align*}
3 y^{\prime \prime }-4 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| 11703 |
\begin{align*}
4 y+y^{\prime \prime }&=x^{2}+3 x \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| 11704 |
\begin{align*}
2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.646 |
|
| 11705 |
\begin{align*}
y^{\prime }+5 y&=\left \{\begin {array}{cc} -5 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.646 |
|
| 11706 |
\begin{align*}
x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| 11707 |
\begin{align*}
\left (-x^{2}+1\right ) {y^{\prime }}^{2}&=1-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| 11708 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}+x^{2}-\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| 11709 |
\begin{align*}
2 y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.647 |
|
| 11710 |
\begin{align*}
x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.647 |
|
| 11711 |
\begin{align*}
2 x^{\prime }+y^{\prime }-3 x-y&=t \\
x^{\prime }+y^{\prime }-4 x-y&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| 11712 |
\begin{align*}
y^{\prime }+\frac {1}{2 y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| 11713 |
\begin{align*}
x^{\prime \prime }+2 \sin \left (x\right )&=\sin \left (2 t \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.647 |
|
| 11714 |
\begin{align*}
z^{\prime }+2 y^{\prime }+3 y&=0 \\
y^{\prime }+3 y-2 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| 11715 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=2 x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime }&=2 x_{1}+x_{2}+7 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 11716 |
\begin{align*}
6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 11717 |
\begin{align*}
t^{2} y^{\prime \prime }-2 y&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 11718 | \begin{align*}
x^{\prime }+x+2 y&=8 \\
2 x+y^{\prime }-2 y&=2 \,{\mathrm e}^{-t}-8 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.648 |
|
| 11719 |
\begin{align*}
y^{\prime }+4 \csc \left (x \right )&=\left (3-\cot \left (x \right )\right ) y+\sin \left (x \right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.648 |
|
| 11720 |
\begin{align*}
-\left (-a^{2} x^{2}+6\right ) y+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 11721 |
\begin{align*}
y y^{\prime \prime }&=-y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.648 |
|
| 11722 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 11723 |
\begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.648 |
|
| 11724 |
\begin{align*}
x \left (x -1\right ) y^{\prime \prime }+\left (\left (\operatorname {a1} +\operatorname {b1} +1\right ) x -\operatorname {d1} \right ) y^{\prime }+\operatorname {a1} \operatorname {b1} \operatorname {d1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.648 |
|
| 11725 |
\begin{align*}
x^{2} \left (x +y\right ) y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.648 |
|
| 11726 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +k \left (1+k \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 11727 |
\begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 t \right ) \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 11728 |
\begin{align*}
x^{\prime }&=\frac {1}{\sqrt {t^{2}+1}} \\
x \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 11729 |
\begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=2 y+z \\
z^{\prime }&=-x-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| 11730 |
\begin{align*}
x^{\prime }&=2 x+3 y-7 \\
y^{\prime }&=-x-2 y+5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 11731 |
\begin{align*}
{y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.649 |
|
| 11732 |
\begin{align*}
b y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 11733 |
\begin{align*}
t^{2} x^{\prime \prime }-2 x&=t^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 11734 |
\begin{align*}
x^{\prime }&=5 x+2 y+5 t \\
y^{\prime }&=3 x+4 y+17 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 11735 |
\begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=14 \,{\mathrm e}^{-5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 11736 |
\begin{align*}
y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y&=96 \sin \left (2 x \right ) \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 11737 | \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.649 |
|
| 11738 |
\begin{align*}
x^{\prime }+3 x+2 y&=0 \\
3 x+y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| 11739 |
\begin{align*}
\left (5 x^{3}+2 x^{2}\right ) y^{\prime \prime }+\left (-x^{2}+3 x \right ) y^{\prime }-\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11740 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2}+4 x_{3} \\
x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime }&=4 x_{1}+x_{2}+4 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11741 |
\begin{align*}
2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11742 |
\begin{align*}
3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11743 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11744 |
\begin{align*}
y^{\prime }+3 y&=\delta \left (x -2\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11745 |
\begin{align*}
y^{\prime \prime } x -\left (2 x^{2}+1\right ) y^{\prime }&=4 x^{3} {\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11746 |
\begin{align*}
y^{\prime }&={\mathrm e}^{z -y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11747 |
\begin{align*}
y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y&={\mathrm e}^{k x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11748 |
\begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.650 |
|
| 11749 |
\begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| 11750 |
\begin{align*}
x_{1}^{\prime }&=39 x_{1}+8 x_{2}-16 x_{3} \\
x_{2}^{\prime }&=-36 x_{1}-5 x_{2}+16 x_{3} \\
x_{3}^{\prime }&=72 x_{1}+16 x_{2}-29 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 11751 |
\begin{align*}
y^{\prime \prime }-y&=x^{2} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 11752 |
\begin{align*}
\left (\operatorname {b2} \,x^{2}+\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.651 |
|
| 11753 |
\begin{align*}
y^{\prime \prime }&=\frac {12 y}{\left (x +1\right )^{2} \left (x^{2}+2 x +3\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.651 |
|
| 11754 |
\begin{align*}
y^{\prime \prime } x +\left (y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.651 |
|
| 11755 |
\begin{align*}
4 y+y^{\prime \prime }&=2 \sec \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 11756 | \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=2 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.651 |
|
| 11757 |
\begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=4 x+24 t \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 11758 |
\begin{align*}
y+y^{\prime }&=7 \operatorname {Heaviside}\left (t -4\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| 11759 |
\begin{align*}
x^{2} \left (x +4\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 11760 |
\begin{align*}
y^{\prime \prime }-y&=x^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 11761 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=30 \operatorname {Heaviside}\left (-1+t \right ) {\mathrm e}^{1-t} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 11762 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 11763 |
\begin{align*}
y y^{\prime \prime }-3 {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.652 |
|
| 11764 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 11765 |
\begin{align*}
\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 11766 |
\begin{align*}
x^{\prime }+2 y&=3 t \\
y^{\prime }-2 x&=4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 11767 |
\begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=6 x_{1}+4 \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| 11768 |
\begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & t =0 \\ \sin \left (\frac {1}{t}\right ) & \operatorname {otherwise} \end {array}\right . \\
\end{align*} Using Laplace transform method. |
✓ |
✗ |
✓ |
✓ |
0.652 |
|
| 11769 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2}-2 x_{4} \\
x_{2}^{\prime }&=x_{2} \\
x_{3}^{\prime }&=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\
x_{4}^{\prime }&=-4 x_{2}-x_{4} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
x_{3} \left (0\right ) &= 1 \\
x_{4} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| 11770 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x^{2} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| 11771 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| 11772 |
\begin{align*}
y^{\prime \prime }&=a \left (b +c x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.653 |
|
| 11773 |
\begin{align*}
y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| 11774 |
\begin{align*}
8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.653 |
|
| 11775 | \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=-x_{2}+x_{3} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.653 |
|
| 11776 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| 11777 |
\begin{align*}
\cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| 11778 |
\begin{align*}
y^{\prime \prime }+\frac {\left (1-t \right ) y^{\prime }}{t}+\frac {\left (1-\cos \left (t \right )\right ) y}{t^{3}}&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.653 |
|
| 11779 |
\begin{align*}
x_{1}^{\prime }&=28 x_{1}+50 x_{2}+100 x_{3} \\
x_{2}^{\prime }&=15 x_{1}+33 x_{2}+60 x_{3} \\
x_{3}^{\prime }&=-15 x_{1}-30 x_{2}-57 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11780 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2}-2 \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11781 |
\begin{align*}
3 y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11782 |
\begin{align*}
t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11783 |
\begin{align*}
y^{\prime \prime }&=\left (1+2 \tan \left (x \right )^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.654 |
|
| 11784 |
\begin{align*}
-\left (n \left (n +1\right )-a^{2} x^{2}\right ) y+2 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11785 |
\begin{align*}
-2 y+2 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.654 |
|
| 11786 |
\begin{align*}
16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11787 |
\begin{align*}
y^{\prime \prime }&=2 a \left (c +b x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.654 |
|
| 11788 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11789 |
\begin{align*}
5 y^{\prime \prime } x +8 y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11790 |
\begin{align*}
x_{1}^{\prime }&=-x_{3} \\
x_{2}^{\prime }&=2 x_{1} \\
x_{3}^{\prime }&=-x_{1}+2 x_{2}+4 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 7 \\
x_{2} \left (0\right ) &= 5 \\
x_{3} \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11791 |
\begin{align*}
{y^{\prime }}^{2}+2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.654 |
|
| 11792 |
\begin{align*}
t^{2} x^{\prime \prime }-2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11793 |
\begin{align*}
n^{\prime }&=-a n \\
n \left (0\right ) &= n_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11794 | \begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2}+1 \\
x_{2}^{\prime }&=x_{1}+t \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.654 |
|
| 11795 |
\begin{align*}
2 a y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| 11796 |
\begin{align*}
y^{\prime \prime } x -\left (x +4\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.655 |
|
| 11797 |
\begin{align*}
2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| 11798 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-3 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-x_{2} \\
x_{3}^{\prime }&=-x_{2}-2 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -2 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| 11799 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| 11800 |
\begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.655 |
|