| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime }&=x-4 y \\
y^{\prime }&=4 x-7 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
x^{\prime }&=-7 x+y-6 z \\
y^{\prime }&=10 x-4 y+12 z \\
z^{\prime }&=2 x-y+z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.773 |
|
| \begin{align*}
x^{\prime }&=3 x+2 y+4 z \\
y^{\prime }&=2 x+2 z \\
z^{\prime }&=4 x+2 y+3 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| \begin{align*}
x^{\prime }&=2 y+z \\
y^{\prime }&=-x-3 y-z \\
z^{\prime }&=x+y-z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
x^{\prime }&=-2 x+y+z \\
y^{\prime }&=-3 x+2 y+3 z \\
z^{\prime }&=x-y-2 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=-2 x \\
z^{\prime }&=2 h \\
h^{\prime }&=-2 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| \begin{align*}
x^{\prime }&=2 y+z \\
y^{\prime }&=-2 x+h \\
z^{\prime }&=2 h \\
h^{\prime }&=-2 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| \begin{align*}
x^{\prime }&=x \left (1-x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.017 |
|
| \begin{align*}
x^{\prime }&=-x \left (1-x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.743 |
|
| \begin{align*}
x^{\prime }&=x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=-\frac {\left (x_{1}^{2}+\sqrt {x_{1}^{2}+4 x_{2}^{2}}\right ) x_{1}}{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.030 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-x_{2}+1 \\
x_{2}^{\prime }&=2 x_{1}-x_{2}+5 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| \begin{align*}
x^{\prime }&=x-x^{3}-x y \\
y^{\prime }&=2 y-y^{5}-y \,x^{4} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.050 |
|
| \begin{align*}
x^{\prime }&=x^{2}+y^{2}+1 \\
y^{\prime }&=x^{2}-y^{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.038 |
|
| \begin{align*}
x^{\prime }&=x^{2}+y^{2}-1 \\
y^{\prime }&=2 x y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.033 |
|
| \begin{align*}
x^{\prime }&=6 x-6 x^{2}-2 x y \\
y^{\prime }&=4 y-4 y^{2}-2 x y \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.037 |
|
| \begin{align*}
x^{\prime }&=\tan \left (x+y\right ) \\
y^{\prime }&=x+x^{3} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.046 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{y}-x \\
y^{\prime }&={\mathrm e}^{x}+y \\
\end{align*} | system_of_ODEs | ✗ | ✓ | ✓ | ✗ | 0.050 |
|
| \begin{align*}
z^{\prime \prime }+z^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
3.783 |
|
| \begin{align*}
z^{\prime \prime }+z+z^{5}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
49.891 |
|
| \begin{align*}
z^{\prime \prime }+{\mathrm e}^{z^{2}}&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
1.353 |
|
| \begin{align*}
z^{\prime \prime }+\frac {z}{1+z^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
2.559 |
|
| \begin{align*}
z^{\prime \prime }+z-2 z^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
1.788 |
|
| \begin{align*}
x_{1}^{\prime }&=-5 x_{1}+x_{2} \\
x_{2}^{\prime }&=x_{1}-5 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{2} \\
x_{2}^{\prime }&=8 x_{1}-6 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}-x_{2} \\
x_{2}^{\prime }&=-2 x_{1}+5 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
x_{1}^{\prime }&=-4 x_{1}-x_{2} \\
x_{2}^{\prime }&=x_{1}-6 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=-8 x_{1}+4 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{2} \\
x_{2}^{\prime }&=-2 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.962 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2} \\
x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.543 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2} \\
x_{2}^{\prime }&=-5 x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{2} \\
x_{2}^{\prime }&=-9 x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.546 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.108 |
|
| \begin{align*}
y^{\prime \prime }-\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.056 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y \left (L \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.945 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.967 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.011 |
|
| \begin{align*}
x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.849 |
|
| \begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.830 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.301 |
|
| \begin{align*}
y^{\prime }&=2 y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.996 |
|
| \begin{align*}
x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.517 |
|
| \begin{align*}
\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.828 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }-1+y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.194 |
|
| \begin{align*}
\tan \left (x \right ) y^{\prime }-y&=1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.240 |
|
| \begin{align*}
y+3+\cot \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.472 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.572 |
|
| \begin{align*}
x^{\prime }&=1-\sin \left (2 t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.483 |
|
| \begin{align*}
\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.972 |
|
| \begin{align*}
\sec \left (x \right ) \cos \left (y\right )^{2}&=\cos \left (x \right ) \sin \left (y\right ) y^{\prime } \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 8.708 |
|
| \begin{align*}
y^{\prime } x +y&=x y \left (y^{\prime }-1\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.563 |
|
| \begin{align*}
y x +\sqrt {x^{2}+1}\, y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.494 |
|
| \begin{align*}
y&=y x +x^{2} y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.254 |
|
| \begin{align*}
\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.823 |
|
| \begin{align*}
y^{2}+y^{\prime } y+x^{2} y y^{\prime }-1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.181 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.248 |
|
| \begin{align*}
y^{\prime } x +2 y&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.928 |
|
| \begin{align*}
\cos \left (y\right ) \sin \left (x \right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.149 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=0 \\
y \left (3\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.070 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.730 |
|
| \begin{align*}
{\mathrm e}^{y} \left (1+y^{\prime }\right )&=1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.378 |
|
| \begin{align*}
1+y^{2}&=\frac {y^{\prime }}{x^{3} \left (x -1\right )} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.991 |
|
| \begin{align*}
\left (x^{2}+3 x \right ) y^{\prime }&=y^{3}+2 y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
12.391 |
|
| \begin{align*}
\left (x^{2}+x +1\right ) y^{\prime }&=y^{2}+2 y+5 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.496 |
|
| \begin{align*}
\left (x^{2}-2 x -8\right ) y^{\prime }&=y^{2}+y-2 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.473 |
|
| \begin{align*}
x +y&=y^{\prime } x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.333 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.582 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.710 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -y}{x +4 y} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 5.675 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
23.800 |
|
| \begin{align*}
y^{\prime } y+x&=2 y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
4.482 |
|
| \begin{align*}
y^{\prime } x -y+\sqrt {y^{2}-x^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.059 |
|
| \begin{align*}
y^{2}+x^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.523 |
|
| \begin{align*}
\left (y x -x^{2}\right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
11.190 |
|
| \begin{align*}
y^{\prime } x +y&=2 \sqrt {y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.546 |
|
| \begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.273 |
|
| \begin{align*}
y \left (x^{2}-y x +y^{2}\right )+x y^{\prime } \left (x^{2}+y x +y^{2}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
58.076 |
|
| \begin{align*}
y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.547 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.877 |
|
| \begin{align*}
y^{2}+x^{2}&=2 x y^{\prime } y \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.456 |
|
| \begin{align*}
\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.342 |
|
| \begin{align*}
{\mathrm e}^{\frac {y}{x}} x +y&=y^{\prime } x \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
12.150 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
11.019 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\tan \left (\frac {y}{x}\right ) \\
y \left (6\right ) &= \pi \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.251 |
|
| \begin{align*}
\left (3 y x -2 x^{2}\right ) y^{\prime }&=2 y^{2}-y x \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
11.307 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x -k \sqrt {y^{2}+x^{2}}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _dAlembert] | ✓ | ✓ | ✓ | ✓ | 66.776 |
|
| \begin{align*}
y^{2} \left (y^{\prime } y-x \right )+x^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.974 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
9.340 |
|
| \begin{align*}
x +y-\left (x -y+2\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
14.944 |
|
| \begin{align*}
x +\left (x -2 y+2\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.234 |
|
| \begin{align*}
2 x -y+1+\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
12.754 |
|
| \begin{align*}
x -y+2+\left (x +y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
15.109 |
|
| \begin{align*}
x -y+\left (y-x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.270 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y-1}{x -y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
14.857 |
|
| \begin{align*}
x +y+\left (2 x +2 y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.072 |
|
| \begin{align*}
x -y+1+\left (x -y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.682 |
|