2.2.28 Problems 2701 to 2800

Table 2.69: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

2701

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=4 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.402

2702

\begin{align*} x^{\prime }&=x-3 y \\ y^{\prime }&=-2 x+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.398

2703

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=5 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.533

2704

\begin{align*} x^{\prime }&=3 x-2 y \\ y^{\prime }&=4 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.538

2705

\begin{align*} x^{\prime }&=4 x+5 y+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ y^{\prime }&=-2 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.999

2706

\begin{align*} x^{\prime }&=3 x-4 y+{\mathrm e}^{t} \\ y^{\prime }&=x-y+{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.575

2707

\begin{align*} x^{\prime }&=2 x-5 y+\sin \left (t \right ) \\ y^{\prime }&=x-2 y+\tan \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

1.304

2708

\begin{align*} x^{\prime }&=y+\textit {f\_1} \left (t \right ) \\ y^{\prime }&=-x+f_{2} \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.800

2709

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.046

2710

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.050

2711

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }-8 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.056

2712

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.049

2713

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_x]]

0.605

2714

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= -1 \\ \end{align*}

[[_high_order, _missing_x]]

0.097

2715

\begin{align*} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime \prime }\left (0\right ) &= -1 \\ \end{align*}

[[_high_order, _missing_x]]

0.095

2716

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.066

2717

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\tan \left (t \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.447

2718

\begin{align*} y^{\prime \prime \prime \prime }-y&=g \left (t \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.398

2719

\begin{align*} y^{\prime \prime \prime \prime }+y&=g \left (t \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.740

2720

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=2 t^{2}+4 \sin \left (t \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.503

2721

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime }&=t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.198

2722

\begin{align*} y^{\prime \prime \prime \prime }-y&=t +\sin \left (t \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.474

2723

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=t^{2} \sin \left (t \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.737

2724

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=t^{2} \\ \end{align*}

[[_high_order, _missing_y]]

0.113

2725

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y&=t +{\mathrm e}^{-t} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.130

2726

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y&=t^{3} {\mathrm e}^{-t} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.178

2727

\begin{align*} x_{1}^{\prime }&=6 x_{1}-3 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.374

2728

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2} \\ x_{2}^{\prime }&=-4 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.388

2729

\begin{align*} x_{1}^{\prime }&=3 x_{1}+2 x_{2}+4 x_{3} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{3} \\ x_{3}^{\prime }&=4 x_{1}+2 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.615

2730

\begin{align*} x_{1}^{\prime }&=7 x_{1}-x_{2}+6 x_{3} \\ x_{2}^{\prime }&=-10 x_{1}+4 x_{2}-12 x_{3} \\ x_{3}^{\prime }&=-2 x_{1}+x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.762

2731

\begin{align*} x_{1}^{\prime }&=-7 x_{1}+6 x_{3} \\ x_{2}^{\prime }&=5 x_{2} \\ x_{3}^{\prime }&=6 x_{1}+2 x_{3} \\ \end{align*}

system_of_ODEs

0.552

2732

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}+3 x_{3}+6 x_{4} \\ x_{2}^{\prime }&=3 x_{1}+6 x_{2}+9 x_{3}+18 x_{4} \\ x_{3}^{\prime }&=5 x_{1}+10 x_{2}+15 x_{3}+30 x_{4} \\ x_{4}^{\prime }&=7 x_{1}+14 x_{2}+21 x_{3}+42 x_{4} \\ \end{align*}

system_of_ODEs

0.866

2733

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2} \\ x_{2}^{\prime }&=4 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.410

2734

\begin{align*} x_{1}^{\prime }&=x_{1}-3 x_{2} \\ x_{2}^{\prime }&=-2 x_{1}+2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.407

2735

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }&=x_{1}+3 x_{2}-x_{3} \\ x_{3}^{\prime }&=3 x_{1}+3 x_{2}-x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= -2 \\ x_{3} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.587

2736

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}+10 x_{2}+2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -1 \\ x_{2} \left (0\right ) &= -4 \\ x_{3} \left (0\right ) &= 13 \\ \end{align*}

system_of_ODEs

0.759

2737

\begin{align*} x_{1}^{\prime }&=x_{1}-3 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-x_{2} \\ x_{3}^{\prime }&=-x_{2}-2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -2 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.655

2738

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{2}-2 x_{3} \\ x_{2}^{\prime }&=-x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }&=4 x_{1}+x_{2}-3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 4 \\ x_{3} \left (0\right ) &= -7 \\ \end{align*}

system_of_ODEs

0.725

2739

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.516

2740

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-3 x_{2} \\ x_{3}^{\prime }&=x_{3} \\ \end{align*}

system_of_ODEs

0.746

2741

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=3 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }&=2 x_{1}+2 x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.761

2742

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{3} \\ x_{2}^{\prime }&=x_{2}-x_{3} \\ x_{3}^{\prime }&=-2 x_{1}-x_{3} \\ \end{align*}

system_of_ODEs

0.566

2743

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.408

2744

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.463

2745

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{3} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ x_{3}^{\prime }&=-2 x_{1}-x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= -1 \\ x_{3} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

1.343

2746

\begin{align*} x_{1}^{\prime }&=2 x_{2} \\ x_{2}^{\prime }&=-2 x_{1} \\ x_{3}^{\prime }&=-3 x_{4} \\ x_{4}^{\prime }&=3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ x_{4} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

1.188

2747

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2} \\ x_{2}^{\prime }&=x_{2} \\ x_{3}^{\prime }&=2 x_{3} \\ \end{align*}

system_of_ODEs

0.379

2748

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }&=2 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ x_{3} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.441

2749

\begin{align*} x_{1}^{\prime }&=-x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{1}-3 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}-x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.507

2750

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-3 x_{1}+2 x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.468

2751

\begin{align*} x_{1}^{\prime }&=-x_{1}-x_{2} \\ x_{2}^{\prime }&=-x_{2} \\ x_{3}^{\prime }&=-2 x_{3} \\ \end{align*}

system_of_ODEs

0.411

2752

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{3} \\ x_{2}^{\prime }&=2 x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{3} \\ x_{4}^{\prime }&=-x_{3}+2 x_{4} \\ \end{align*}

system_of_ODEs

0.535

2753

\begin{align*} x_{1}^{\prime }&=-x_{1}+x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }&=-2 x_{1}+x_{2}+3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.459

2754

\begin{align*} x_{1}^{\prime }&=-4 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=10 x_{1}+9 x_{2}+x_{3} \\ x_{3}^{\prime }&=-4 x_{1}-3 x_{2}+x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.519

2755

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\ x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.428

2756

\begin{align*} x_{1}^{\prime }&=3 x_{1} \\ x_{2}^{\prime }&=x_{1}+3 x_{2} \\ x_{3}^{\prime }&=3 x_{3} \\ x_{4}^{\prime }&=2 x_{3}+3 x_{4} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ x_{4} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.477

2757

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }&=3 x_{1}+2 x_{2}+x_{3}+{\mathrm e}^{t} \cos \left (2 t \right ) \\ \end{align*}

system_of_ODEs

1.111

2758

\begin{align*} x_{1}^{\prime }&=x_{1}+{\mathrm e}^{c t} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }&=3 x_{1}+2 x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

1.270

2759

\begin{align*} x_{1}^{\prime }&=4 x_{1}+5 x_{2}+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ x_{2}^{\prime }&=-2 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.731

2760

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=x_{1}-x_{2}+{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.471

2761

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2}+\sin \left (t \right ) \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+\tan \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.766

2762

\begin{align*} x_{1}^{\prime }&=x_{2}+f_{1} \left (t \right ) \\ x_{2}^{\prime }&=-x_{1}+f_{2} \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.697

2763

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{3}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=2 x_{2} \\ x_{3}^{\prime }&=x_{2}+3 x_{3}+{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.719

2764

\begin{align*} x_{1}^{\prime }&=-x_{1}-x_{2}-2 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}+3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.710

2765

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2}+{\mathrm e}^{3 t} \\ \end{align*}

system_of_ODEs

0.851

2766

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}-t^{2} \\ x_{2}^{\prime }&=x_{1}+3 x_{2}+2 t \\ \end{align*}

system_of_ODEs

0.550

2767

\begin{align*} x_{1}^{\prime }&=x_{1}+3 x_{2}+2 x_{3}+\sin \left (t \right ) \\ x_{2}^{\prime }&=-x_{1}+2 x_{2}+x_{3} \\ x_{3}^{\prime }&=4 x_{1}-x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

1.250

2768

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\ x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3}-{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.899

2769

\begin{align*} x_{1}^{\prime }&=-x_{1}-x_{2}+1 \\ x_{2}^{\prime }&=-4 x_{2}-x_{3}+t \\ x_{3}^{\prime }&=5 x_{2}+{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

1.710

2770

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}-x_{3}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=2 x_{1}+3 x_{2}-4 x_{3}+2 \,{\mathrm e}^{2 t} \\ x_{3}^{\prime }&=4 x_{1}+x_{2}-4 x_{3}+{\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

21.969

2771

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=x_{1}+3 x_{2}+x_{3}-{\mathrm e}^{3 t} \\ x_{3}^{\prime }&=-3 x_{1}+x_{2}-x_{3}-{\mathrm e}^{3 t} \\ \end{align*}

system_of_ODEs

22.717

2772

\begin{align*} x_{1}^{\prime }&=3 x_{1}+2 x_{2}+4 x_{3}+2 \,{\mathrm e}^{8 t} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{3}+{\mathrm e}^{8 t} \\ x_{3}^{\prime }&=4 x_{1}+2 x_{2}+3 x_{3}+2 \,{\mathrm e}^{8 t} \\ \end{align*}

system_of_ODEs

0.917

2773

\begin{align*} x_{1}^{\prime }&=x_{1}-3 x_{2} \\ x_{2}^{\prime }&=-2 x_{1}+2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.211

2774

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.207

2775

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2}+t \\ x_{2}^{\prime }&=2 x_{1}-2 x_{2}+3 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.214

2776

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+2 \,{\mathrm e}^{t} \\ x_{2}^{\prime }&=4 x_{1}+x_{2}-{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.195

2777

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=x_{1}-x_{2}+{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.183

2778

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2}+\sin \left (t \right ) \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+\tan \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

147.855

2779

\begin{align*} x_{1}^{\prime }&=4 x_{1}+5 x_{2}+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ x_{2}^{\prime }&=-2 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.300

2780

\begin{align*} x_{1}^{\prime }&=x_{2}+f_{1} \left (t \right ) \\ x_{2}^{\prime }&=-x_{1}+f_{2} \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

1.200

2781

\begin{align*} x_{1}^{\prime }&=2 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2}+\delta \left (t -\pi \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.377

2782

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2}+1-\operatorname {Heaviside}\left (t -\pi \right ) \\ x_{2}^{\prime }&=2 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.368

2783

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\ x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.331

2784

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{3}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=2 x_{2} \\ x_{3}^{\prime }&=3 x_{3}+{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.283

2785

\begin{align*} x_{1}^{\prime }&=-x_{1}-x_{2}+2 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}+3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.376

2786

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }&=3 x_{1}+2 x_{2}+x_{3}+{\mathrm e}^{t} \cos \left (2 t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.325

2787

\begin{align*} x_{1}^{\prime }&=3 x_{1} \\ x_{2}^{\prime }&=x_{1}+3 x_{2} \\ x_{3}^{\prime }&=3 x_{3} \\ x_{4}^{\prime }&=2 x_{3}+3 x_{4} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ x_{4} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.375

2788

\begin{align*} x^{\prime }&=x-x^{2}-2 x y \\ y^{\prime }&=2 y-2 y^{2}-3 x y \\ \end{align*}

system_of_ODEs

0.040

2789

\begin{align*} x^{\prime }&=-b x y+m \\ y^{\prime }&=b x y-g y \\ \end{align*}

system_of_ODEs

0.036

2790

\begin{align*} x^{\prime }&=a x-b x y \\ y^{\prime }&=-c y+d x y \\ z^{\prime }&=z+x^{2}+y^{2} \\ \end{align*}

system_of_ODEs

0.046

2791

\begin{align*} x^{\prime }&=-x-x \,y^{2} \\ y^{\prime }&=-y-y \,x^{2} \\ z^{\prime }&=1-z+x^{2} \\ \end{align*}

system_of_ODEs

0.056

2792

\begin{align*} x^{\prime }&=x \,y^{2}-x \\ y^{\prime }&=x \sin \left (\pi y\right ) \\ \end{align*}

system_of_ODEs

0.036

2793

\begin{align*} x^{\prime }&=\cos \left (y\right ) \\ y^{\prime }&=\sin \left (x\right )-1 \\ \end{align*}

system_of_ODEs

0.036

2794

\begin{align*} x^{\prime }&=-1-y-{\mathrm e}^{x} \\ y^{\prime }&=x^{2}+y \left ({\mathrm e}^{x}-1\right ) \\ z^{\prime }&=x+\sin \left (z\right ) \\ \end{align*}

system_of_ODEs

0.047

2795

\begin{align*} x^{\prime }&=x-y^{2} \\ y^{\prime }&=x^{2}-y \\ z^{\prime }&={\mathrm e}^{z}-x \\ \end{align*}

system_of_ODEs

0.060

2796

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=2 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.425

2797

\begin{align*} x^{\prime }&=x+y+z-2 \,{\mathrm e}^{-t} \\ y^{\prime }&=2 x+y-z-2 \,{\mathrm e}^{-t} \\ z^{\prime }&=-3 x+2 y+4 z+3 \,{\mathrm e}^{-t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.942

2798

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x-2 y \\ \end{align*}

system_of_ODEs

0.362

2799

\begin{align*} x^{\prime }&=-3 x-4 y \\ y^{\prime }&=2 x+y \\ \end{align*}

system_of_ODEs

0.528

2800

\begin{align*} x^{\prime }&=-5 x+3 y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.559