2.3.83 Problems 8201 to 8300

Table 2.697: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

8201

7098

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.411

8202

7522

\begin{align*} y^{\prime }&=-4 x-y \\ x^{\prime }&=2 x-y \\ \end{align*}

0.411

8203

8164

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

0.411

8204

8295

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= -4 \\ \end{align*}

0.411

8205

9505

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.411

8206

9822

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\ \end{align*}

0.411

8207

10425

\begin{align*} y^{\prime \prime }-\frac {2 y}{x^{2}}&=x \,{\mathrm e}^{-\sqrt {x}} \\ \end{align*}

0.411

8208

13880

\begin{align*} \left (x^{2}+1\right )^{2} y^{\prime \prime }+a y&=0 \\ \end{align*}

0.411

8209

16659

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=3 x^{4} \\ \end{align*}

0.411

8210

18319

\begin{align*} y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x}&=x \,{\mathrm e}^{2 x}-1 \\ \end{align*}

0.411

8211

18937

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\delta \left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.411

8212

19208

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\ \end{align*}

0.411

8213

20347

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

0.411

8214

20933

\begin{align*} x^{\prime }&=2 x+3 y \\ y^{\prime }&=-3 x+2 y \\ \end{align*}

0.411

8215

21709

\begin{align*} y^{\prime }+2 y&=\cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.411

8216

22294

\begin{align*} x^{\prime \prime }-3 x&=\sin \left (y \right ) \\ \end{align*}

0.411

8217

24020

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime }-2 y&=2+x +x \,{\mathrm e}^{-x}+x^{2} {\mathrm e}^{2 x} \\ \end{align*}

0.411

8218

864

\begin{align*} x^{\prime \prime }+8 x^{\prime }+16 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

0.412

8219

970

\begin{align*} x_{1}^{\prime }&=9 x_{1}+5 x_{2} \\ x_{2}^{\prime }&=-6 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

0.412

8220

1639

\begin{align*} y^{\prime }-4 y&=\frac {48 x}{y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.412

8221

3766

\begin{align*} y^{\prime \prime }-9 y&=F \left (x \right ) \\ \end{align*}

0.412

8222

8294

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.412

8223

9643

\begin{align*} y^{\prime \prime }+16 y&=\delta \left (t -2 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.412

8224

10157

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

0.412

8225

10238

\begin{align*} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y&=0 \\ \end{align*}

0.412

8226

10644

\begin{align*} x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y&=0 \\ \end{align*}

0.412

8227

11730

\begin{align*} x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 \left (y+2\right ) y&=0 \\ \end{align*}

0.412

8228

14299

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=5 \sin \left (7 t \right ) \\ \end{align*}

0.412

8229

15145

\begin{align*} y y^{\prime \prime }&=1 \\ \end{align*}

0.412

8230

16934

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=8 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 9 \\ \end{align*}

0.412

8231

18025

\begin{align*} y^{2} \left (1+{y^{\prime }}^{2}\right )-4 y^{\prime } y-4 x&=0 \\ \end{align*}

0.412

8232

18262

\begin{align*} y^{\prime \prime }+y&=-2 x +2 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

0.412

8233

18797

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ y \left (\frac {\pi }{4}\right ) &= 2 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= -2 \\ \end{align*}

0.412

8234

20740

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

0.412

8235

21128

\begin{align*} x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (\theta \right ) &= 0 \\ \end{align*}

0.412

8236

21468

\begin{align*} \left (-y+y^{\prime } x \right )^{2}-{y^{\prime }}^{2}-1&=0 \\ \end{align*}

0.412

8237

22163

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.412

8238

23499

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 x \,{\mathrm e}^{-x}+x^{2} \\ \end{align*}

0.412

8239

24738

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\ \end{align*}

0.412

8240

1316

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

0.413

8241

1335

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

0.413

8242

1443

\begin{align*} x_{1}^{\prime }&=5 x_{1}-x_{2} \\ x_{2}^{\prime }&=3 x_{1}+x_{2} \\ \end{align*}

0.413

8243

2266

\begin{align*} y_{1}^{\prime }&=15 y_{1}-9 y_{2} \\ y_{2}^{\prime }&=16 y_{1}-9 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 5 \\ y_{2} \left (0\right ) &= 8 \\ \end{align*}

0.413

8244

5737

\begin{align*} y^{\prime \prime }&=a x +b y \\ \end{align*}

0.413

8245

7995

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\ \end{align*}

0.413

8246

16075

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&={\mathrm e}^{-2 t} \\ \end{align*}

0.413

8247

16635

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=6 \,{\mathrm e}^{-5 x} \\ \end{align*}

0.413

8248

18226

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=\left (1+\sin \left (x \right )\right ) {\mathrm e}^{x} \\ \end{align*}

0.413

8249

18259

\begin{align*} -4 y^{\prime }+y^{\prime \prime \prime }&=x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2} \\ \end{align*}

0.413

8250

19240

\begin{align*} 1+y^{2}+y^{2} y^{\prime }&=0 \\ \end{align*}

0.413

8251

24755

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \tan \left (x \right ) \\ \end{align*}

0.413

8252

24835

\begin{align*} 9 {y^{\prime }}^{2}+12 x y^{4} y^{\prime }+4 y^{5}&=0 \\ \end{align*}

0.413

8253

25772

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.413

8254

590

\begin{align*} x^{\prime }&=3 x-y \\ y^{\prime }&=5 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.414

8255

3724

\begin{align*} y^{\prime \prime }-y&=9 x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

0.414

8256

5535

\begin{align*} x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4&=0 \\ \end{align*}

0.414

8257

5629

\begin{align*} {y^{\prime }}^{3}+{y^{\prime }}^{2}-y&=0 \\ \end{align*}

0.414

8258

7578

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y&=6 \cos \left (2 t \right )+8 \sin \left (2 t \right ) \\ \end{align*}

0.414

8259

8809

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y&=f \left (x \right ) \\ \end{align*}

0.414

8260

9574

\begin{align*} y^{\prime \prime } x -y^{\prime }+y x&=0 \\ \end{align*}

0.414

8261

10566

\begin{align*} 2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y&=0 \\ \end{align*}

0.414

8262

10743

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

0.414

8263

11116

\begin{align*} 2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y&=0 \\ \end{align*}

0.414

8264

14218

\begin{align*} y^{\prime }&=r \left (a -y\right ) \\ \end{align*}

0.414

8265

14620

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \\ \end{align*}

0.414

8266

14794

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=7 x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 6 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.414

8267

14925

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.414

8268

15999

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.414

8269

16083

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.414

8270

16845

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\lambda y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.414

8271

18136

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.414

8272

18228

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&={\mathrm e}^{2 x}+\sin \left (2 x \right ) \\ \end{align*}

0.414

8273

22699

\begin{align*} y^{\prime \prime }+y&=x^{2}+\sin \left (x \right ) \\ \end{align*}

0.414

8274

23592

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}

0.414

8275

24501

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.414

8276

25189

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-5\right ) y&=0 \\ \end{align*}

0.414

8277

25521

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{c t} \\ \end{align*}

0.414

8278

582

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=6 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.415

8279

651

\begin{align*} y^{\prime }&=2 x +1 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.415

8280

1315

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+82 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

0.415

8281

2398

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

0.415

8282

3734

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=50 \sin \left (3 x \right ) \\ \end{align*}

0.415

8283

4373

\begin{align*} y^{\prime }+y^{2}&=x^{2}+1 \\ \end{align*}

0.415

8284

4506

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

0.415

8285

5396

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

0.415

8286

5540

\begin{align*} x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y&=0 \\ \end{align*}

0.415

8287

8296

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (8\right ) &= -4 \\ \end{align*}

0.415

8288

8906

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

0.415

8289

9185

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

0.415

8290

9247

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=14 \,{\mathrm e}^{-5 x} \\ \end{align*}

0.415

8291

9421

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{3}-x \\ \end{align*}
Series expansion around \(x=0\).

0.415

8292

9474

\begin{align*} x^{\prime }&=-3 x+\sqrt {2}\, y \\ y^{\prime }&=\sqrt {2}\, x-2 y \\ \end{align*}

0.415

8293

9765

\begin{align*} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\ y \left (2\right ) &= 5 \\ y^{\prime }\left (2\right ) &= 2 \\ \end{align*}

0.415

8294

11716

\begin{align*} \left (3 x +5\right ) {y^{\prime }}^{2}-\left (x +3 y\right ) y^{\prime }+y&=0 \\ \end{align*}

0.415

8295

11738

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}&=0 \\ \end{align*}

0.415

8296

14603

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 9 \\ \end{align*}

0.415

8297

14605

\begin{align*} 9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.415

8298

14941

\begin{align*} x^{\prime \prime }+6 x^{\prime }+10 x&={\mathrm e}^{-2 t} \cos \left (t \right ) \\ \end{align*}

0.415

8299

15092

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \cos \left (x \right ) x \\ \end{align*}

0.415

8300

16084

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.415