2.3.82 Problems 8101 to 8200

Table 2.695: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

8101

11001

\begin{align*} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\ \end{align*}

0.406

8102

15182

\begin{align*} \frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (1+3 x \right ) y^{\prime }}{x}+\frac {y}{x}&=3 x \\ \end{align*}

0.406

8103

17398

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.406

8104

18825

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&=t^{2}+3 \sin \left (t \right ) \\ \end{align*}

0.406

8105

19628

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= \operatorname {yd}_{0} \\ \end{align*}
Using Laplace transform method.

0.406

8106

21145

\begin{align*} x^{\prime \prime }-x&={\mathrm e}^{k t} \\ \end{align*}

0.406

8107

21636

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.406

8108

24816

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\ \end{align*}

0.406

8109

25168

\begin{align*} y_{1}^{\prime }&=2 y_{2} \\ y_{2}^{\prime }&=-2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

0.406

8110

25325

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.406

8111

25559

\begin{align*} m y^{\prime \prime }+b y^{\prime }+k y&={\mathrm e}^{c t} \\ \end{align*}

0.406

8112

2551

\begin{align*} y^{\prime \prime }-6 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

0.407

8113

2734

\begin{align*} x_{1}^{\prime }&=x_{1}-3 x_{2} \\ x_{2}^{\prime }&=-2 x_{1}+2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 5 \\ \end{align*}

0.407

8114

5777

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

0.407

8115

7080

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{2} \\ \end{align*}

0.407

8116

7198

\begin{align*} 4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.407

8117

10239

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

0.407

8118

10267

\begin{align*} y^{\prime }&=y \\ \end{align*}

0.407

8119

14788

\begin{align*} x^{\prime }&=3 x+4 y \\ y^{\prime }&=2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.407

8120

15178

\begin{align*} y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}}&=0 \\ \end{align*}

0.407

8121

15770

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=-2 x-y \\ \end{align*}

0.407

8122

22621

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.407

8123

23082

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.407

8124

25111

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

0.407

8125

25121

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \\ \end{align*}

0.407

8126

25123

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

0.407

8127

25568

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.407

8128

569

\begin{align*} x^{\prime \prime }+9 x&=\delta \left (t -3 \pi \right )+\cos \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.408

8129

1876

\begin{align*} \left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y&=0 \\ y \left (4\right ) &= 3 \\ y^{\prime }\left (4\right ) &= -4 \\ \end{align*}
Series expansion around \(x=4\).

0.408

8130

1927

\begin{align*} 2 y^{\prime \prime }+5 y^{\prime } x +\left (2 x^{2}+4\right ) y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Series expansion around \(x=0\).

0.408

8131

2224

\begin{align*} 16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 y^{\prime } x +9 y&=96 x^{{5}/{2}} \\ \end{align*}

0.408

8132

2233

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 y^{\prime } x +6 y&=40 x^{3} \\ y \left (-1\right ) &= -1 \\ y^{\prime }\left (-1\right ) &= -7 \\ y^{\prime \prime }\left (-1\right ) &= -1 \\ y^{\prime \prime \prime }\left (-1\right ) &= -31 \\ \end{align*}

0.408

8133

2389

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

0.408

8134

2743

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

0.408

8135

3725

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=-10 \sin \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.408

8136

4006

\begin{align*} x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{\left (-x^{2}+1\right )^{2}}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.408

8137

5520

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2}&=0 \\ \end{align*}

0.408

8138

5784

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

0.408

8139

6013

\begin{align*} \left (-x^{2}+2\right ) y+4 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.408

8140

6179

\begin{align*} -\left (5+4 x \right ) y+32 y^{\prime } x +16 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.408

8141

7087

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

0.408

8142

7202

\begin{align*} u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u&=0 \\ \end{align*}

0.408

8143

7661

\begin{align*} 2 y-y^{\prime } x +y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

0.408

8144

8191

\begin{align*} \left (y-1\right ) y^{\prime }&=1 \\ \end{align*}

0.408

8145

8200

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y&=5 \sin \left (t \right ) \\ \end{align*}

0.408

8146

10221

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.408

8147

10740

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}}&=0 \\ \end{align*}

0.408

8148

12650

\begin{align*} y^{\prime \prime }&=\frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \\ \end{align*}

0.408

8149

13157

\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end {array}\right ]\)

N/A

N/A

N/A

0.408

8150

14046

\begin{align*} {y^{\prime }}^{2}+y^{2}&=1 \\ \end{align*}

0.408

8151

14375

\begin{align*} x^{\prime }&=-2 y \\ y^{\prime }&=-4 x \\ \end{align*}

0.408

8152

16508

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 14 \\ \end{align*}

0.408

8153

16931

\begin{align*} x^{\prime }&=4 x-3 y \\ y^{\prime }&=6 x-7 y \\ \end{align*}

0.408

8154

17033

\begin{align*} y^{\prime }&=\frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \\ y \left (0\right ) &= 0 \\ \end{align*}

0.408

8155

18428

\begin{align*} x^{\prime }&=8 y-x \\ y^{\prime }&=x+y \\ \end{align*}

0.408

8156

19033

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-9 x_{2} \\ x_{2}^{\prime }&=x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 4 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.408

8157

21686

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.408

8158

22237

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 0 & t <1 \\ 2 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.408

8159

23588

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=x-2 y \\ \end{align*}

0.408

8160

24787

\begin{align*} \left (y^{2}+x^{2}\right )^{2} {y^{\prime }}^{2}&=4 y^{2} x^{2} \\ \end{align*}

0.408

8161

25442

\begin{align*} y^{\prime }&=A \cos \left (\omega t \right )+B \sin \left (\omega t \right ) \\ \end{align*}

0.408

8162

25761

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.408

8163

872

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=3 x \,{\mathrm e}^{x} \\ \end{align*}

0.409

8164

1910

\begin{align*} \left (3 x +2\right ) y^{\prime \prime }-y^{\prime } x +2 y x&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

0.409

8165

3736

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=169 \sin \left (3 x \right ) \\ \end{align*}

0.409

8166

6237

\begin{align*} \left (-2 x^{2}+1\right ) y+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

0.409

8167

6523

\begin{align*} 2 x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\ \end{align*}

0.409

8168

9422

\begin{align*} 2 y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.409

8169

9512

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.409

8170

9566

\begin{align*} y^{\prime \prime } x +y^{\prime }+y x&=0 \\ \end{align*}

0.409

8171

14609

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

0.409

8172

23075

\begin{align*} y^{\prime \prime }+2 y&=7 \cos \left (3 x \right ) \\ \end{align*}

0.409

8173

23479

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

0.409

8174

980

\begin{align*} x_{1}^{\prime }&=-50 x_{1}+20 x_{2} \\ x_{2}^{\prime }&=100 x_{1}-60 x_{2} \\ \end{align*}

0.410

8175

2733

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2} \\ x_{2}^{\prime }&=4 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

0.410

8176

4155

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x} \\ \end{align*}

0.410

8177

5534

\begin{align*} x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

0.410

8178

7638

\begin{align*} \left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.410

8179

8943

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=x^{2}+\cos \left (x \right ) \\ \end{align*}

0.410

8180

14621

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=10 \sin \left (4 x \right ) \\ \end{align*}

0.410

8181

14684

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

0.410

8182

15083

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.410

8183

16506

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.410

8184

16936

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=5 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 15 \\ \end{align*}

0.410

8185

18926

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}
Using Laplace transform method.

0.410

8186

18929

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}
Using Laplace transform method.

0.410

8187

21646

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.410

8188

23037

\begin{align*} y^{\prime \prime }+3 y^{\prime }+5 y&=4 \,{\mathrm e}^{3 t} \\ \end{align*}

0.410

8189

25333

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-6 t y^{\prime }-4 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.410

8190

25471

\begin{align*} y^{\prime }&=1+y \\ y \left (0\right ) &= -1 \\ \end{align*}

0.410

8191

1394

\begin{align*} y^{\prime \prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.411

8192

1748

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=0 \\ \end{align*}

0.411

8193

2265

\begin{align*} y_{1}^{\prime }&=-11 y_{1}+8 y_{2} \\ y_{2}^{\prime }&=-2 y_{1}-3 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 6 \\ y_{2} \left (0\right ) &= 2 \\ \end{align*}

0.411

8194

2571

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

0.411

8195

2614

\begin{align*} t \left (2-t \right ) y^{\prime \prime }-6 \left (-1+t \right ) y^{\prime }-4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(t=1\).

0.411

8196

2751

\begin{align*} x_{1}^{\prime }&=-x_{1}-x_{2} \\ x_{2}^{\prime }&=-x_{2} \\ x_{3}^{\prime }&=-2 x_{3} \\ \end{align*}

0.411

8197

3738

\begin{align*} y^{\prime \prime }+y&=3 \,{\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

0.411

8198

5584

\begin{align*} \left (\left (-a +1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (-a +1\right ) y^{2}&=0 \\ \end{align*}

0.411

8199

5603

\begin{align*} 4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\ \end{align*}

0.411

8200

5653

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x&=0 \\ \end{align*}

0.411