| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 7701 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2} \\
x_{2}^{\prime }&=-4 x_{1}+3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7702 |
\begin{align*}
4 y+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7703 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7704 |
\begin{align*}
2 \left (1+3 x \right ) y+2 \left (2-3 x \right ) x y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.388 |
|
| 7705 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=54 x +18 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7706 |
\begin{align*}
1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7707 |
\begin{align*}
y^{\prime \prime }+9 y&=-3 \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7708 |
\begin{align*}
x^{\prime }&=-\frac {5 x}{2}+2 y \\
y^{\prime }&=\frac {3 x}{4}-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7709 |
\begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.388 |
|
| 7710 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7711 |
\begin{align*}
y^{\prime \prime }&=\frac {y^{\prime }}{x +1}-\frac {\left (1+3 x \right ) y}{4 x^{2} \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7712 |
\begin{align*}
x^{\prime }+3 x+4 y&=0 \\
y^{\prime }+2 x+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7713 |
\begin{align*}
y+2 x y^{2}-x^{2} y^{3}+2 x^{2} y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7714 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right )-{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7715 |
\begin{align*}
x^{\prime }&=5 x-y \\
y^{\prime }&=3 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7716 |
\begin{align*}
y^{\prime \prime }+4 y&=3 \cos \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7717 |
\begin{align*}
y^{\prime }&=4 y+8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7718 | \begin{align*}
y^{\prime \prime }+9 y&=3 \sin \left (3 x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.388 |
|
| 7719 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7720 |
\begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7721 |
\begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7722 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7723 |
\begin{align*}
y^{\prime }&=\arcsin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7724 |
\begin{align*}
y^{\prime \prime }-y&=4 x \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7725 |
\begin{align*}
y^{\prime \prime }+y&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7726 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7727 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7728 |
\begin{align*}
\left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7729 |
\begin{align*}
y_{1}^{\prime }-3 y_{1}&=-4 y_{2} \\
y_{2}^{\prime }+y_{2}&=y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7730 |
\begin{align*}
x^{2} y^{\prime }+2 y x&=y^{3} \\
y \left (1\right ) &= \frac {\sqrt {2}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7731 |
\begin{align*}
x^{2} y^{\prime }&=a +b \,x^{n}+y^{2} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.389 |
|
| 7732 |
\begin{align*}
4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.389 |
|
| 7733 |
\begin{align*}
y^{\prime \prime }+y&=a \sin \left (b x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7734 |
\begin{align*}
\left (2+x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7735 |
\begin{align*}
y x -y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7736 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=6 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7737 | \begin{align*}
x^{\prime }&=3 x-4 y \\
y^{\prime }&=4 x-7 y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.389 |
|
| 7738 |
\begin{align*}
\left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.389 |
|
| 7739 |
\begin{align*}
y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.389 |
|
| 7740 |
\begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{t} t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7741 |
\begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=-5 x-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7742 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7743 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (12 x -4\right ) {\mathrm e}^{-5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7744 |
\begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7745 |
\begin{align*}
y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7746 |
\begin{align*}
{y^{\prime }}^{2}+y&=y^{\prime } x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7747 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \left (1+\cos \left (2 x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7748 |
\begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7749 |
\begin{align*}
y^{\prime \prime }-13 y^{\prime }+36 y&={\mathrm e}^{4 x} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7750 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 7751 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7752 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7753 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7754 |
\begin{align*}
x {y^{\prime }}^{3}&=y^{\prime } y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.390 |
|
| 7755 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=120 \sin \left (5 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7756 | \begin{align*}
y^{\prime \prime }-2 y^{\prime } x +3 y&=x^{2} \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✗ | 0.390 |
|
| 7757 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7758 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7759 |
\begin{align*}
y^{\prime \prime }+y&=-\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7760 |
\begin{align*}
a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7761 |
\begin{align*}
x^{\prime \prime }+x&=3 \delta \left (t -2 \pi \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7762 |
\begin{align*}
x^{\prime }&=-2 x+2 y \\
y^{\prime }&=x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7763 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&={\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7764 |
\begin{align*}
2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y&=-3 t^{2} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
y^{\prime \prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7765 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-\frac {5 x_{2}}{2} \\
x_{2}^{\prime }&=\frac {x_{1}}{2}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7766 |
\begin{align*}
y^{\prime }+y&=1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7767 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7768 |
\begin{align*}
y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7769 |
\begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7770 |
\begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \cot \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 7771 |
\begin{align*}
2 y^{\prime \prime }+4 y^{\prime }+7 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7772 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7773 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7774 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7775 | \begin{align*}
y_{1}^{\prime }&=-7 y_{1}+3 y_{2} \\
y_{2}^{\prime }&=-3 y_{1}-y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.391 |
|
| 7776 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7777 |
\begin{align*}
\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.391 |
|
| 7778 |
\begin{align*}
y^{\prime }+2 y&=2 \operatorname {Heaviside}\left (-1+t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7779 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=2 \sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7780 |
\begin{align*}
-\left (-4 x^{2}+4 x +1\right ) y+4 x \left (1-2 x \right ) y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.391 |
|
| 7781 |
\begin{align*}
y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7782 |
\begin{align*}
y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7783 |
\begin{align*}
y^{\prime \prime }&=\frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (x -2\right )}+\frac {y}{3 x^{2} \left (x -2\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.391 |
|
| 7784 |
\begin{align*}
x^{\prime \prime }+x^{\prime }+x&=t^{2} {\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7785 |
\begin{align*}
x^{\prime \prime }+x^{\prime }+x&=4 t +5 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7786 |
\begin{align*}
y^{\prime \prime }+16 y&=\delta \left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7787 |
\begin{align*}
\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7788 |
\begin{align*}
x^{\prime }&=-2 y \\
y^{\prime }&=8 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7789 |
\begin{align*}
x^{\prime }&=4 y \\
y^{\prime }&=-4 x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7790 |
\begin{align*}
x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7791 |
\begin{align*}
x^{2} y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7792 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7793 |
\begin{align*}
y^{\prime \prime }+2 y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7794 | \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.391 |
|
| 7795 |
\begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7796 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=\sin \left ({\mathrm e}^{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 7797 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| 7798 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=2 \cos \left (\omega t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| 7799 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+\left (x -2\right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| 7800 |
\begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=6 x+3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.392 |
|