| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 7601 |
\begin{align*}
y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.382 |
|
| 7602 |
\begin{align*}
x^{\prime \prime }-4 x&=4 t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| 7603 |
\begin{align*}
x^{\prime }&=3 x-y \\
y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| 7604 |
\begin{align*}
x_{1}^{\prime }&=-x_{1}-x_{2} \\
x_{2}^{\prime }&=-\frac {5 x_{2}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7605 |
\begin{align*}
\left (4 x^{2}-24 x +37\right ) y^{\prime \prime }+y&=0 \\
y \left (3\right ) &= 4 \\
y^{\prime }\left (3\right ) &= -6 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7606 |
\begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }&=x^{3}-\frac {\cos \left (2 x \right )}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7607 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7608 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7609 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=3 x_{1}-4 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7610 |
\begin{align*}
x^{\prime }&=7 x+6 y \\
y^{\prime }&=2 x+6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7611 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=-2 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7612 |
\begin{align*}
y^{\prime \prime }+\left (x -2\right ) y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7613 |
\begin{align*}
x^{\prime }&=x+7 y \\
y^{\prime }&=3 x+5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7614 |
\begin{align*}
x^{\prime \prime }-x&=\frac {1}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7615 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7616 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=9 x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7617 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 7618 | \begin{align*}
x_{1}^{\prime }&=4 x_{1}-3 x_{2} \\
x_{2}^{\prime }&=6 x_{1}-7 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 8 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.384 |
|
| 7619 |
\begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7620 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= \alpha \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7621 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }-9 y^{\prime } x -6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7622 |
\begin{align*}
y^{\prime \prime }+3 y&=t^{3}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7623 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }-2 y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7624 |
\begin{align*}
16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.384 |
|
| 7625 |
\begin{align*}
-12 y-8 y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.384 |
|
| 7626 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7627 |
\begin{align*}
y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.384 |
|
| 7628 |
\begin{align*}
x^{\prime \prime }+x^{\prime }+x&=3 \cos \left (t \right )-2 \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7629 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+10 x&={\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7630 |
\begin{align*}
x^{\prime }&=-\frac {9 x}{10}-2 y \\
y^{\prime }&=x+\frac {11 y}{10} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7631 |
\begin{align*}
y^{\prime }+y \ln \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✗ |
0.384 |
|
| 7632 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=-t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7633 |
\begin{align*}
y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7634 |
\begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=10 \,{\mathrm e}^{-3 x} \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7635 |
\begin{align*}
x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 7636 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=x +1 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7637 | \begin{align*}
2 x^{\prime \prime }+2 x^{\prime }+x&=3 \sin \left (10 t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.385 |
|
| 7638 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2} \\
x_{2}^{\prime }&=6 x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7639 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7640 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x -4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7641 |
\begin{align*}
\left (2+4 x \right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -7 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7642 |
\begin{align*}
y_{1}^{\prime }&=y_{1}+2 y_{2} \\
y_{2}^{\prime }&=2 y_{1}+y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7643 |
\begin{align*}
y^{\prime \prime }+2 x^{2} y^{\prime }+y x&=2 \cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.385 |
|
| 7644 |
\begin{align*}
10 y^{\prime }+8 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.385 |
|
| 7645 |
\begin{align*}
\left (x -1\right ) \left (x -2\right ) y^{\prime \prime }+\left (4 x -6\right ) y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7646 |
\begin{align*}
y^{\prime }&=2 y-4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7647 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=25 x^{2}+12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7648 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +8 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7649 |
\begin{align*}
x^{\prime }&=2 x+2 y \\
y^{\prime }&=x+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7650 |
\begin{align*}
y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7651 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a x +b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7652 |
\(\left [\begin {array}{ccc} 2 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.385 |
|
| 7653 |
\(\left [\begin {array}{ccc} 3 & -3 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.385 |
|
| 7654 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7655 |
\begin{align*}
y^{\prime }+\left (2+x \right ) y^{\prime \prime }+\left (2+x \right )^{2} y^{\prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.385 |
|
| 7656 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=10 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7657 |
\begin{align*}
y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime }&=x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7658 | \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.385 |
|
| 7659 |
\begin{align*}
y^{\prime \prime }-y&=-20 \delta \left (t -3\right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7660 |
\begin{align*}
x^{\prime \prime }-x&=3 \,{\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7661 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-i x y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.385 |
|
| 7662 |
\begin{align*}
2 y^{\prime \prime }+y^{\prime }-y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 7663 |
\begin{align*}
\left (3 x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7664 |
\begin{align*}
a^{2} y+x^{4} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7665 |
\begin{align*}
x y^{2} y^{\prime \prime }&=\left (a -y^{2}\right ) y^{\prime }+x y {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.386 |
|
| 7666 |
\begin{align*}
y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7667 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=12 x \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7668 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7669 |
\begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7670 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7671 |
\begin{align*}
4 x^{2} y^{\prime \prime }+y&=8 \sqrt {x}\, \left (1+\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7672 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7673 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7674 |
\begin{align*}
\sin \left (y^{\prime }\right )+y^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.386 |
|
| 7675 |
\begin{align*}
\left (2 x +1\right ) y-x \left (2 x +1\right ) y^{\prime }+x^{2} \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.386 |
|
| 7676 |
\begin{align*}
\left (-y+y^{\prime } x \right ) y^{\prime \prime }+4 {y^{\prime }}^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.386 |
|
| 7677 |
\(\left [\begin {array}{ccc} 4 & -3 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.386 |
|
| 7678 | \begin{align*}
x^{\prime }&=3 x+4 y \\
y^{\prime }&=3 x+2 y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.386 |
|
| 7679 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7680 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&={\mathrm e}^{2 x} \sin \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7681 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=-\sec \left (t \right ) \tan \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7682 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7683 |
\begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7684 |
\begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{-3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7685 |
\begin{align*}
y^{\prime \prime }-y&=x^{2}-x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7686 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=2 x^{3}+7 x^{2}-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7687 |
\begin{align*}
\left (x +3\right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 7688 |
\begin{align*}
y^{2}+12 x^{2} y+\left (2 y x +4 x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 7689 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 7690 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 7691 |
\begin{align*}
x^{\prime }&=10 x-5 y \\
y^{\prime }&=8 x-12 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 7692 |
\begin{align*}
3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 7693 |
\(\left [\begin {array}{ccc} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.387 |
|
| 7694 |
\begin{align*}
x^{\prime }&=x+4 y \\
y^{\prime }&=-3 x+2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 7695 |
\begin{align*}
2 x^{2} y y^{\prime \prime }+y^{2}&=x^{2} {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.387 |
|
| 7696 |
\begin{align*}
{y^{\prime }}^{3}-4 x y^{\prime } y+8 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.387 |
|
| 7697 |
\begin{align*}
z^{\prime \prime }-4 z&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 7698 | \begin{align*}
y^{\prime \prime }-2 r y^{\prime }+\left (r^{2}-\frac {\alpha ^{2}}{4}\right ) y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.387 |
|
| 7699 |
\begin{align*}
y^{\prime \prime }+9 y&=2 x^{2} {\mathrm e}^{3 x}+5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 7700 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{4}+y&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.388 |
|