2.2.26 Problems 2501 to 2600

Table 2.65: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

2501

\begin{align*} t y^{\prime }&=y+\sqrt {t^{2}+y^{2}} \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.515

2502

\begin{align*} 2 t y y^{\prime }&=3 y^{2}-t^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

61.787

2503

\begin{align*} \left (t -\sqrt {t y}\right ) y^{\prime }&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.123

2504

\begin{align*} y^{\prime }&=\frac {t +y}{t -y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.504

2505

\begin{align*} {\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.638

2506

\begin{align*} y^{\prime }&=\frac {t +y+1}{t -y+3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.191

2507

\begin{align*} 1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

21.612

2508

\begin{align*} t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.063

2509

\begin{align*} 2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (\cos \left (y\right ) t^{2}+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

4.362

2510

\begin{align*} 1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

2.537

2511

\begin{align*} \sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

14.634

2512

\begin{align*} \frac {y^{2}}{2}-2 y \,{\mathrm e}^{t}+\left (-{\mathrm e}^{t}+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

1.904

2513

\begin{align*} 2 t y^{3}+3 t^{2} y^{2} y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

0.163

2514

\begin{align*} 2 t \cos \left (y\right )+3 t^{2} y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘x=_G(y,y’)‘]

30.360

2515

\begin{align*} 3 t^{2}+4 t y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.960

2516

\begin{align*} 2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_exact]

4.746

2517

\begin{align*} 3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.421

2518

\begin{align*} y^{\prime }&=2 t \left (1+y\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

1.664

2519

\begin{align*} y^{\prime }&=t^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

7.737

2520

\begin{align*} y^{\prime }&={\mathrm e}^{t}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

8.908

2521

\begin{align*} y^{\prime }&=y^{2}+\cos \left (t \right )^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

57.204

2522

\begin{align*} y^{\prime }&=1+y+y^{2} \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

13.581

2523

\begin{align*} y^{\prime }&=t +y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_Riccati, _special]]

18.077

2524

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

28.846

2525

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_Riccati]

26.987

2526

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Riccati]

27.308

2527

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.169

2528

\begin{align*} y^{\prime }&=y^{3}+{\mathrm e}^{-5 t} \\ y \left (0\right ) &= {\frac {2}{5}} \\ \end{align*}

[_Abel]

0.860

2529

\begin{align*} y^{\prime }&={\mathrm e}^{\left (y-t \right )^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.087

2530

\begin{align*} y^{\prime }&=\left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.332

2531

\begin{align*} y^{\prime }&={\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.362

2532

\begin{align*} y^{\prime }&=\frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \\ y \left (0\right ) &= 100 \\ \end{align*}

[_Bernoulli]

6.016

2533

\begin{align*} y^{\prime }&=t^{2}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_Riccati, _special]]

6.652

2534

\begin{align*} y^{\prime }&=t \left (1+y\right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

1.442

2535

\begin{align*} y^{\prime }&=t y^{a} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

19.727

2536

\begin{align*} y^{\prime }&=t \sqrt {1-y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

11.058

2537

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+2 t \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.178

2538

\begin{align*} y^{\prime }&=1-t +y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

2.754

2539

\begin{align*} y^{\prime }&=\frac {t^{2}+y^{2}}{1+t +y^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_rational]

1.051

2540

\begin{align*} y^{\prime }&={\mathrm e}^{t} y^{2}-2 y \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.163

2541

\begin{align*} y^{\prime }&=t y^{3}-y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Bernoulli]

2.707

2542

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.078

2543

\begin{align*} y^{\prime \prime }+t y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.668

2544

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.108

2545

\begin{align*} 6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.190

2546

\begin{align*} y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

2547

\begin{align*} 3 y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

2548

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.302

2549

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-10 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.345

2550

\begin{align*} 5 y^{\prime \prime }+5 y^{\prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.372

2551

\begin{align*} y^{\prime \prime }-6 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.407

2552

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= v \\ \end{align*}

[[_2nd_order, _missing_x]]

0.269

2553

\begin{align*} t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.230

2554

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

2.470

2555

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.278

2556

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

2557

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.281

2558

\begin{align*} 4 y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

2559

\begin{align*} y^{\prime \prime }+y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.441

2560

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.369

2561

\begin{align*} 2 y^{\prime \prime }-y^{\prime }+3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.569

2562

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.588

2563

\begin{align*} y^{\prime \prime }+w^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.032

2564

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.789

2565

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.020

2566

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.255

2567

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.253

2568

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.374

2569

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.381

2570

\begin{align*} 6 y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.619

2571

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.411

2572

\begin{align*} y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.106

2573

\begin{align*} y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.109

2574

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.101

2575

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.092

2576

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y&=0 \\ \end{align*}

[_Gegenbauer]

0.111

2577

\begin{align*} \left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.095

2578

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.151

2579

\begin{align*} t y^{\prime \prime }-\left (1+3 t \right ) y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.098

2580

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.949

2581

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.787

2582

\begin{align*} y^{\prime \prime }+y&=\sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.471

2583

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

2584

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

2585

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

2586

\begin{align*} 3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.540

2587

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

2588

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\sqrt {t +1} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.712

2589

\begin{align*} y^{\prime \prime }-y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.567

2590

\begin{align*} t^{2} y^{\prime \prime }-2 y&=t^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.648

2591

\begin{align*} y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y&=t +1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.680

2592

\begin{align*} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1}&=t^{2}+1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.115

2593

\begin{align*} y^{\prime \prime }+3 y&=t^{3}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

2594

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t \,{\mathrm e}^{\alpha t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

2595

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{t} t^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

2596

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{2}+t +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.365

2597

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.398

2598

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=t^{2} {\mathrm e}^{7 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

2599

\begin{align*} y^{\prime \prime }+4 y&=t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.516

2600

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=\left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.708