2.2.25 Problems 2401 to 2500

Table 2.63: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

2401

\begin{align*} y^{\prime \prime }+y&=\sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.422

2402

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

2403

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

2404

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.381

2405

\begin{align*} 3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.575

2406

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.786

2407

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\sqrt {t +1} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.773

2408

\begin{align*} y^{\prime \prime }-y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

2409

\begin{align*} y^{\prime \prime }+\frac {t^{2} y}{4}&=f \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.214

2410

\begin{align*} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1}&=t^{2}+1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.104

2411

\begin{align*} m y^{\prime \prime }+c y^{\prime }+k y&=F_{0} \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.930

2412

\begin{align*} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.327

2413

\begin{align*} y^{\prime \prime }-t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler]]

0.257

2414

\begin{align*} \left (t^{2}+2\right ) y^{\prime \prime }-t y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.378

2415

\begin{align*} y^{\prime \prime }-t^{3} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler]]

0.263

2416

\begin{align*} t \left (2-t \right ) y^{\prime \prime }-6 \left (-1+t \right ) y^{\prime }-4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(t=1\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.460

2417

\begin{align*} y^{\prime \prime }+t^{2} y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler]]

0.274

2418

\begin{align*} y^{\prime \prime }-t^{3} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler]]

0.248

2419

\begin{align*} y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y&=0 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}
Series expansion around \(t=-1\).

[[_2nd_order, _with_linear_symmetries]]

0.395

2420

\begin{align*} y^{\prime \prime }-2 t y^{\prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.405

2421

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+\alpha \left (\alpha +1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Gegenbauer]

0.542

2422

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.486

2423

\begin{align*} y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.342

2424

\begin{align*} y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.287

2425

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.378

2426

\begin{align*} y^{\prime \prime }+y^{\prime }+t y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.345

2427

\begin{align*} y^{\prime \prime }+t y^{\prime }+y \,{\mathrm e}^{t}&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.504

2428

\begin{align*} y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{t}&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.446

2429

\begin{align*} y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-t} y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.592

2430

\begin{align*} t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.862

2431

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.737

2432

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.845

2433

\begin{align*} \left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.882

2434

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.016

2435

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.908

2436

\begin{align*} \left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.660

2437

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.854

2438

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.533

2439

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.063

2440

\begin{align*} t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

2.154

2441

\begin{align*} t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=2\).

[[_2nd_order, _with_linear_symmetries]]

0.226

2442

\begin{align*} \sin \left (t \right ) y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+\frac {y}{t}&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.577

2443

\begin{align*} \left ({\mathrm e}^{t}-1\right ) y^{\prime \prime }+{\mathrm e}^{t} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

1.027

2444

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y&=0 \\ \end{align*}
Series expansion around \(t=-1\).

[[_2nd_order, _with_linear_symmetries]]

0.317

2445

\begin{align*} t^{3} y^{\prime \prime }+\sin \left (t^{3}\right ) y^{\prime }+t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.790

2446

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-\left (t +1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.661

2447

\begin{align*} 2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Laguerre]

0.728

2448

\begin{align*} 2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.737

2449

\begin{align*} 2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.664

2450

\begin{align*} 4 t y^{\prime \prime }+3 y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler]]

0.677

2451

\begin{align*} 2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.644

2452

\begin{align*} t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.122

2453

\begin{align*} t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.674

2454

\begin{align*} t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Lienard]

0.633

2455

\begin{align*} t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.700

2456

\begin{align*} t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.654

2457

\begin{align*} t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Laguerre]

0.780

2458

\begin{align*} t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

1.855

2459

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-\left (t +1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

1.811

2460

\begin{align*} t y^{\prime \prime }+t y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

1.547

2461

\begin{align*} t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.522

2462

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+t^{2} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Lienard]

0.453

2463

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Bessel]

0.694

2464

\begin{align*} t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Laguerre]

0.805

2465

\begin{align*} 2 \sin \left (t \right ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.858

2466

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t +1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.529

2467

\begin{align*} t y^{\prime \prime }+y^{\prime }-4 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler]]

0.554

2468

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.544

2469

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Bessel]

1.809

2470

\begin{align*} t y^{\prime \prime }+3 y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler]]

1.575

2471

\begin{align*} y \cos \left (t \right )+y^{\prime }&=0 \\ \end{align*}

[_separable]

2.086

2472

\begin{align*} \sqrt {t}\, \sin \left (t \right ) y+y^{\prime }&=0 \\ \end{align*}

[_separable]

3.041

2473

\begin{align*} \frac {2 t y}{t^{2}+1}+y^{\prime }&=\frac {1}{t^{2}+1} \\ \end{align*}

[_linear]

1.397

2474

\begin{align*} y+y^{\prime }&={\mathrm e}^{t} t \\ \end{align*}

[[_linear, ‘class A‘]]

1.374

2475

\begin{align*} t^{2} y+y^{\prime }&=1 \\ \end{align*}

[_linear]

1.260

2476

\begin{align*} t^{2} y+y^{\prime }&=t^{2} \\ \end{align*}

[_separable]

1.911

2477

\begin{align*} \frac {t y}{t^{2}+1}+y^{\prime }&=1-\frac {t^{3} y}{t^{4}+1} \\ \end{align*}

[_linear]

2.194

2478

\begin{align*} \sqrt {t^{2}+1}\, y+y^{\prime }&=0 \\ y \left (0\right ) &= \sqrt {5} \\ \end{align*}

[_separable]

2.361

2479

\begin{align*} \sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.156

2480

\begin{align*} \sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.471

2481

\begin{align*} y^{\prime }-2 t y&=t \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

1.856

2482

\begin{align*} t y+y^{\prime }&=t +1 \\ y \left (\frac {3}{2}\right ) &= 0 \\ \end{align*}

[_linear]

1.561

2483

\begin{align*} y+y^{\prime }&=\frac {1}{t^{2}+1} \\ y \left (1\right ) &= 2 \\ \end{align*}

[_linear]

1.719

2484

\begin{align*} y^{\prime }-2 t y&=1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_linear]

1.280

2485

\begin{align*} t y+\left (t^{2}+1\right ) y^{\prime }&=\left (t^{2}+1\right )^{{5}/{2}} \\ \end{align*}

[_linear]

2.466

2486

\begin{align*} 4 t y+\left (t^{2}+1\right ) y^{\prime }&=t \\ y \left (1\right ) &= {\frac {1}{4}} \\ \end{align*}

[_separable]

2.290

2487

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.801

2488

\begin{align*} \left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

2.707

2489

\begin{align*} y^{\prime }&=\left (t +1\right ) \left (1+y\right ) \\ \end{align*}

[_separable]

1.957

2490

\begin{align*} y^{\prime }&=1-t +y^{2}-t y^{2} \\ \end{align*}

[_separable]

2.780

2491

\begin{align*} y^{\prime }&={\mathrm e}^{3+t +y} \\ \end{align*}

[_separable]

1.388

2492

\begin{align*} \cos \left (y\right ) \sin \left (t \right ) y^{\prime }&=\cos \left (t \right ) \sin \left (y\right ) \\ \end{align*}

[_separable]

2.682

2493

\begin{align*} t^{2} \left (1+y^{2}\right )+2 y y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.219

2494

\begin{align*} y^{\prime }&=\frac {2 t}{y+t^{2} y} \\ y \left (2\right ) &= 3 \\ \end{align*}

[_separable]

1.907

2495

\begin{align*} \sqrt {1+y^{2}}\, y^{\prime }&=\frac {t y^{3}}{\sqrt {t^{2}+1}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

4.156

2496

\begin{align*} y^{\prime }&=\frac {3 t^{2}+4 t +2}{-2+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

2.046

2497

\begin{align*} \cos \left (y\right ) y^{\prime }&=-\frac {t \sin \left (y\right )}{t^{2}+1} \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

[_separable]

2.346

2498

\begin{align*} y^{\prime }&=k \left (a -y\right ) \left (b -y\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

7.991

2499

\begin{align*} 3 t y^{\prime }&=y \cos \left (t \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

[_separable]

2.701

2500

\begin{align*} y^{\prime }&=\frac {2 y}{t}+\frac {y^{2}}{t^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.027