| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 4901 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.261 |
|
| 4902 |
\begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.261 |
|
| 4903 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.261 |
|
| 4904 |
\begin{align*}
y^{\prime \prime }&=\frac {y^{\prime }}{x}-\frac {a y}{x^{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4905 |
\begin{align*}
\left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+{\mathrm e}^{x} y-\frac {1}{x^{5}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.261 |
|
| 4906 |
\begin{align*}
x^{\prime }&=13 x \\
y^{\prime }&=13 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4907 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-200 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4908 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4909 |
\begin{align*}
x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.261 |
|
| 4910 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{2 t} t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4911 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4912 |
\begin{align*}
y^{\prime \prime }-x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4913 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 4914 |
\begin{align*}
\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4915 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 4916 |
\begin{align*}
2 y^{\prime \prime }+y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 4917 |
\begin{align*}
y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 4918 | \begin{align*}
y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+f \left (x \right ) y^{2}+y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )&=0 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 0.262 |
|
| 4919 |
\begin{align*}
6 y^{\prime \prime }+5 y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4920 |
\begin{align*}
z^{\prime \prime }-7 z^{\prime }-13 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4921 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4922 |
\begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4923 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4924 |
\begin{align*}
4 y^{\prime \prime }+x^{2} y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4925 |
\begin{align*}
y^{\prime }-y^{\prime \prime } x +{y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4926 |
\begin{align*}
y^{\prime }&=\left (y-2\right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 4927 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4928 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x -2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4929 |
\begin{align*}
y^{\prime \prime }-t^{3} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4930 |
\begin{align*}
y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4931 |
\begin{align*}
2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4932 |
\begin{align*}
y^{\prime }&=x +\frac {1}{x} \\
y \left (-2\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4933 |
\begin{align*}
\left (b x +a \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4934 |
\begin{align*}
2 y y^{\prime \prime }&=8 y^{3}-2 y^{2} \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )-3 f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.263 |
|
| 4935 |
\begin{align*}
\operatorname {A4} y+\operatorname {A3} x y^{\prime }+\operatorname {A2} \,x^{2} y^{\prime \prime }+\operatorname {A1} \,x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4936 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4937 |
\begin{align*}
y^{\prime \prime } x -\left (2+x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4938 | \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=12 x^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.263 |
|
| 4939 |
\begin{align*}
y^{\prime }+y&=1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4940 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-4 x^{2}+1\right ) y^{\prime }+\left (2 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4941 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4942 |
\begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4943 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4944 |
\begin{align*}
2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4945 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4946 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4947 |
\begin{align*}
-\left (5+4 x \right ) y+32 y^{\prime } x +16 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4948 |
\begin{align*}
\sin \left (x \right )-y \cos \left (x \right )-3 \sin \left (x \right ) y^{\prime }+3 \left (\cos \left (x \right )+1\right ) y^{\prime \prime }+\left (x +\sin \left (x \right )\right ) y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4949 |
\begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }&=18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4950 |
\begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4951 |
\(\left [\begin {array}{cc} 0 & 1 \\ 2 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.263 |
|
| 4952 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4953 |
\begin{align*}
y^{\prime }+\frac {y}{x -1}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4954 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4955 |
\begin{align*}
x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 4956 |
\begin{align*}
y^{\prime }&=y-x \\
y \left (0\right ) &= 2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4957 |
\begin{align*}
y&=y^{\prime } x -{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 4958 | \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.263 |
|
| 4959 |
\begin{align*}
y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4960 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4961 |
\begin{align*}
y^{\prime }&=-x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4962 |
\begin{align*}
\left (1-2 x \right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y&=\left (4 x^{2}-4 x +1\right ) {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.264 |
|
| 4963 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4964 |
\begin{align*}
y^{\prime \prime }&=\operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.264 |
|
| 4965 |
\begin{align*}
3 \left (1-y\right ) y y^{\prime \prime }&=2 \left (1-2 y\right ) {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.264 |
|
| 4966 |
\begin{align*}
4 x^{2} y^{\prime }-4 x^{3} y^{\prime \prime }+4 x^{4} y^{\prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4967 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4968 |
\begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4969 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4970 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4971 |
\begin{align*}
f \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4972 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4973 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.264 |
|
| 4974 |
\begin{align*}
3 t \left (t +1\right ) y^{\prime \prime }+t y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.264 |
|
| 4975 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4976 |
\begin{align*}
\left (x +1\right ) y^{\prime \prime }-\left (2+x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.264 |
|
| 4977 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.264 |
|
| 4978 | \begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.264 |
|
| 4979 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.264 |
|
| 4980 |
\begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -1 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4981 |
\begin{align*}
x^{\prime }&=3 x \\
y^{\prime }&=-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4982 |
\begin{align*}
y^{\prime \prime }&=-2 x {y^{\prime }}^{2} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.264 |
|
| 4983 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4984 |
\begin{align*}
y^{\prime \prime }+y x&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.264 |
|
| 4985 |
\begin{align*}
y^{\prime \prime }-12 y^{\prime }+40 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4986 |
\begin{align*}
y^{\prime }&=\left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4987 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4988 |
\begin{align*}
y^{\prime \prime }+4 y&=\delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4989 |
\begin{align*}
\left (2-3 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4990 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4991 |
\begin{align*}
y^{\prime \prime }+3 x^{3} y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4992 |
\begin{align*}
y^{\prime \prime }+9 y&=15 \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4993 |
\begin{align*}
y^{\prime \prime }-9 y&=-72 x \,{\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4994 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4995 |
\begin{align*}
y_{1}^{\prime }-y_{1}&=-2 y_{2} \\
y_{2}^{\prime }-y_{2}&=2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 2 \\
y_{2} \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4996 |
\begin{align*}
y^{\prime \prime }+y&=t +{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 4997 | \begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.265 |
|
| 4998 |
\begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.265 |
|
| 4999 |
\begin{align*}
y^{\prime \prime \prime \prime }&=\sin \left (x \right )+24 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.265 |
|
| 5000 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.265 |
|