| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 4801 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 4802 |
\begin{align*}
y^{\prime \prime }-y&=x \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 4803 |
\begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 4804 |
\begin{align*}
\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 4805 |
\begin{align*}
y^{\prime \prime }&=\left (x^{2}+3\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.257 |
|
| 4806 |
\begin{align*}
x^{\prime }+y^{\prime }-x&=y+t +\sin \left (t \right )+\cos \left (t \right ) \\
x^{\prime }+y^{\prime }&=2 x+3 y+{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.257 |
|
| 4807 |
\begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.257 |
|
| 4808 |
\begin{align*}
x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (9+4 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.257 |
|
| 4809 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.257 |
|
| 4810 |
\begin{align*}
\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.257 |
|
| 4811 |
\begin{align*}
4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.257 |
|
| 4812 |
\(\left [\begin {array}{cc} 7 & -6 \\ 12 & -10 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.257 |
|
| 4813 |
\(\left [\begin {array}{cc} 10 & -6 \\ 12 & -7 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.257 |
|
| 4814 |
\begin{align*}
y^{\prime }&=t^{2}-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 4815 |
\begin{align*}
x^{2}+y^{\prime } x&=3 x +y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 4816 |
\begin{align*}
\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 y^{\prime } x +4 y&=\frac {2}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.257 |
|
| 4817 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=6 \delta \left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 4818 |
\begin{align*}
x^{\prime }&=5 x-6 y \\
y^{\prime }&=6 x-7 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 4819 | \begin{align*}
y^{\prime \prime }&=y^{\prime }+y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.258 |
|
| 4820 |
\begin{align*}
3 x^{2} y^{3}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.258 |
|
| 4821 |
\begin{align*}
x_{1}^{\prime }&=-x_{1} \\
x_{2}^{\prime }&=-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4822 |
\begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y&={\mathrm e}^{2 x}-4 \,{\mathrm e}^{x}-2 \cos \left (x \right )+4 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4823 |
\begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
y \left (2\right ) &= 0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4824 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {1-x}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4825 |
\begin{align*}
y^{\prime \prime }-2 k y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4826 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4827 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.258 |
|
| 4828 |
\(\left [\begin {array}{cc} 11 & -15 \\ 6 & -8 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.258 |
|
| 4829 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4830 |
\(\left [\begin {array}{cc} 2 & 2 \\ 0 & -4 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.258 |
|
| 4831 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+45 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4832 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4833 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4834 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4835 |
\begin{align*}
6 y^{\prime \prime }+11 y^{\prime }+4 y&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4836 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4837 |
\begin{align*}
4 y+y^{\prime \prime }&=16 x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 4838 |
\begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4839 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-3 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4840 | \begin{align*}
y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.259 |
|
| 4841 |
\begin{align*}
-2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x \left (x^{2}+3\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4842 |
\begin{align*}
y^{\prime }+y x&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4843 |
\begin{align*}
{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4844 |
\begin{align*}
\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.259 |
|
| 4845 |
\begin{align*}
4 y^{\prime \prime } x -y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.259 |
|
| 4846 |
\begin{align*}
2 y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.259 |
|
| 4847 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.259 |
|
| 4848 |
\(\left [\begin {array}{cc} 13 & -15 \\ 6 & -6 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.259 |
|
| 4849 |
\(\left [\begin {array}{cc} 6 & 0 \\ 0 & -13 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.259 |
|
| 4850 |
\begin{align*}
9 y^{\prime \prime }+18 y^{\prime }+10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4851 |
\begin{align*}
y^{\prime }&=\left (-x^{2}+4\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4852 |
\begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4853 |
\begin{align*}
i^{\prime }&=\frac {i}{2}-\frac {v}{8} \\
v^{\prime }&=2 i-\frac {v}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4854 |
\begin{align*}
\left (y-y^{\prime } x \right ) \left (y^{\prime }-1\right )&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.259 |
|
| 4855 |
\begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4856 |
\begin{align*}
y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4857 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4858 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4859 |
\begin{align*}
y^{\prime \prime \prime }+y&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 4860 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4861 | \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.260 |
|
| 4862 |
\begin{align*}
16 y^{\prime \prime }+24 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4863 |
\begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4864 |
\begin{align*}
{y^{\prime }}^{2}-\left (-x +2\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4865 |
\begin{align*}
x^{2} {y^{\prime }}^{2}&=a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4866 |
\begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4867 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4868 |
\begin{align*}
\left (x +a \right )^{2} y^{\prime \prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4869 |
\begin{align*}
y+\left (-x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4870 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+5 y&=29 \cos \left (2 t \right ) \\
y \left (0\right ) &= {\frac {16}{5}} \\
y^{\prime }\left (0\right ) &= {\frac {31}{5}} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4871 |
\begin{align*}
{y^{\prime }}^{2}-a^{2} y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4872 |
\begin{align*}
y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4873 |
\begin{align*}
1+y^{2}+y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4874 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4875 |
\begin{align*}
x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4876 |
\begin{align*}
t y^{\prime \prime }+t y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4877 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4878 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4879 |
\begin{align*}
y^{\prime \prime } x +y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4880 | \begin{align*}
\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.260 |
|
| 4881 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4882 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime } x +\left (2 x^{2}+4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4883 |
\begin{align*}
x^{2} \left (4 x +3\right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (4 x +3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4884 |
\begin{align*}
\left (2 x -1\right ) y^{\prime \prime \prime }+\left (x +4\right ) y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4885 |
\(\left [\begin {array}{cc} 4 & -3 \\ 2 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.260 |
|
| 4886 |
\begin{align*}
x^{\prime }&=-3 x+4 y \\
y^{\prime }&=-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4887 |
\begin{align*}
x^{2} y^{\prime }-\sqrt {x}&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4888 |
\begin{align*}
y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✗ |
✗ |
0.260 |
|
| 4889 |
\begin{align*}
y^{\prime \prime \prime \prime }&=\frac {1}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4890 |
\begin{align*}
y^{\prime \prime }-y&=2+5 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4891 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-4 y&=t^{2} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4892 |
\begin{align*}
r^{\prime }&=0 \\
r \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4893 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {y-y^{\prime }}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 4894 |
\begin{align*}
y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4895 |
\begin{align*}
y^{\prime \prime }+y&=10 \,{\mathrm e}^{-3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 4896 |
\begin{align*}
3 y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4897 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4898 |
\begin{align*}
y^{\prime } x&=-\sqrt {a^{2}-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4899 |
\begin{align*}
y&=y^{\prime } x +2 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 4900 | \begin{align*}
9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.261 |
|