| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 3601 |
\begin{align*}
x y y^{\prime \prime }&=y \left (\operatorname {a2} +\operatorname {a3} y^{2}\right )+x \left (\operatorname {a0} +\operatorname {a1} y^{4}\right )-y^{\prime } y+x {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.204 |
|
| 3602 |
\begin{align*}
y^{\prime } y-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 3603 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3604 |
\begin{align*}
3 y^{2} x^{2}+4 \left (x^{3} y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 3605 |
\begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3606 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3607 |
\begin{align*}
4 x^{2} y^{\prime \prime }-3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3608 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-y&=t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3609 |
\begin{align*}
y^{\prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.204 |
|
| 3610 |
\begin{align*}
y^{\prime }+\left (a t +b t \right ) y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3611 |
\begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3612 |
\begin{align*}
\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 3613 |
\begin{align*}
4 y^{\prime \prime }+y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 3614 |
\begin{align*}
x^{4} y^{\prime \prime }+\lambda y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3615 |
\begin{align*}
3 y^{\prime \prime }-14 y^{\prime }-5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3616 |
\begin{align*}
x^{\prime }+y^{\prime }+2 y&=\sin \left (t \right ) \\
x^{\prime }+y^{\prime }-x-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| 3617 |
\begin{align*}
y^{\prime \prime }-9 y&=2+x \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3618 | \begin{align*}
x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 y^{\prime } x +20 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= -1 \\
y^{\prime \prime }\left (1\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.204 |
|
| 3619 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 y^{\prime } x +42 y&=0 \\
y \left (1\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 0 \\
y^{\prime \prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3620 |
\begin{align*}
y_{1}^{\prime }&=-4 y_{1}-y_{2}+2 \,{\mathrm e}^{t} \\
y_{2}^{\prime }&=y_{1}-2 y_{2}+\sin \left (2 t \right ) \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3621 |
\begin{align*}
y^{\left (5\right )}+y^{\prime \prime }&=x^{5}-3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3622 |
\begin{align*}
y^{\prime \prime }-y&=2 x -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3623 |
\begin{align*}
y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+\omega ^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| 3624 |
\begin{align*}
y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3625 |
\begin{align*}
y^{\prime }&=3 a +3 b x +3 b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.205 |
|
| 3626 |
\begin{align*}
{\mathrm e}^{x} \left (x +1\right )+\left (-x \,{\mathrm e}^{x}+{\mathrm e}^{y} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3627 |
\begin{align*}
\left (x +1\right ) y^{\prime }&=x^{2}-2 x +y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3628 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.205 |
|
| 3629 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3630 |
\begin{align*}
x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3631 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3632 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.205 |
|
| 3633 |
\begin{align*}
y^{\prime }&=\cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3634 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }&=12 x -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3635 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=2 x^{2}-3 x -17 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3636 |
\begin{align*}
y^{\prime }&=\frac {t^{2}+1}{t \left (t -2\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| 3637 | \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.205 |
|
| 3638 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 3639 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 3640 |
\begin{align*}
\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.206 |
|
| 3641 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 3642 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=-x^{2}+1 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 3643 |
\begin{align*}
y^{\prime \prime }+9 y&=18 \,{\mathrm e}^{3 x} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 3644 |
\begin{align*}
y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 3645 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 3646 |
\begin{align*}
y^{\prime }&=\frac {1}{\sqrt {t^{2}+2 t}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 3647 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=2 \cos \left (t \right )+\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| 3648 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3649 |
\begin{align*}
x^{\prime \prime }+4 x&=0 \\
x \left (0\right ) &= 5 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3650 |
\begin{align*}
y^{\prime }&=\frac {10}{x^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3651 |
\begin{align*}
y^{\prime \prime }-2 i y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3652 |
\begin{align*}
y^{\prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3653 |
\begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3654 |
\begin{align*}
9 y^{\prime \prime }+9 y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3655 |
\begin{align*}
y^{\prime }-\frac {\left (x +1\right ) y}{3 x}&=y^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3656 | \begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2} \\
x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.207 |
|
| 3657 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3658 |
\begin{align*}
\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3659 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3660 |
\begin{align*}
y^{\prime } x +y&=2 x^{4}+x^{3}+x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.207 |
|
| 3661 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (-x +3\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.207 |
|
| 3662 |
\begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.207 |
|
| 3663 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (-x +3\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3664 |
\begin{align*}
x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (3 x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.207 |
|
| 3665 |
\begin{align*}
y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3666 |
\begin{align*}
y^{\prime \prime }+12 y&=7 y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3667 |
\begin{align*}
y^{\prime }&=3-\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3668 |
\begin{align*}
y^{\prime }&=x \cos \left (x^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3669 |
\begin{align*}
y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3670 |
\begin{align*}
x^{2} y^{\prime \prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3671 |
\begin{align*}
y^{\prime \prime \prime \prime }-16 y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3672 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3673 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=\cos \left (2 t \right ) t \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3674 |
\begin{align*}
16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3675 | \begin{align*}
y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.207 |
|
| 3676 |
\begin{align*}
t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| 3677 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3678 |
\begin{align*}
y^{\prime \prime \prime }-2 y^{\prime }-4 y&=50 \,{\mathrm e}^{2 x}+50 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3679 |
\begin{align*}
b \,{\mathrm e}^{2 a x} y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.208 |
|
| 3680 |
\begin{align*}
y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3681 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3682 |
\begin{align*}
x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.208 |
|
| 3683 |
\begin{align*}
4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.208 |
|
| 3684 |
\begin{align*}
y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.208 |
|
| 3685 |
\begin{align*}
\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime }&=y x \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.208 |
|
| 3686 |
\begin{align*}
y^{\prime \prime \prime }+8 y&=-12 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= -8 \\
y^{\prime }\left (0\right ) &= 24 \\
y^{\prime \prime }\left (0\right ) &= -46 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3687 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3688 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3689 |
\begin{align*}
4 y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3690 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3691 |
\begin{align*}
y^{\prime \prime }+4 y&=\sin \left (3 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| 3692 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 3693 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 3694 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 3695 | \begin{align*}
b \,{\mathrm e}^{k x} y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.209 |
|
| 3696 |
\begin{align*}
y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 3697 |
\begin{align*}
2 y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 3698 |
\begin{align*}
3 y y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.209 |
|
| 3699 |
\begin{align*}
y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| 3700 |
\begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.209 |
|