2.3.37 Problems 3601 to 3700

Table 2.605: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

3601

6498

\begin{align*} x y y^{\prime \prime }&=y \left (\operatorname {a2} +\operatorname {a3} y^{2}\right )+x \left (\operatorname {a0} +\operatorname {a1} y^{4}\right )-y^{\prime } y+x {y^{\prime }}^{2} \\ \end{align*}

0.204

3602

7140

\begin{align*} y^{\prime } y-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

0.204

3603

7262

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ \end{align*}

0.204

3604

7912

\begin{align*} 3 y^{2} x^{2}+4 \left (x^{3} y-3\right ) y^{\prime }&=0 \\ \end{align*}

0.204

3605

8124

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.204

3606

8173

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

0.204

3607

9239

\begin{align*} 4 x^{2} y^{\prime \prime }-3 y&=0 \\ \end{align*}

0.204

3608

9450

\begin{align*} y^{\prime \prime }+2 y^{\prime }-y&=t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.204

3609

10242

\begin{align*} y^{\prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

0.204

3610

10344

\begin{align*} y^{\prime }+\left (a t +b t \right ) y&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.204

3611

10554

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y&=0 \\ \end{align*}

0.204

3612

10744

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

0.204

3613

11111

\begin{align*} 4 y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}

0.204

3614

11214

\begin{align*} x^{4} y^{\prime \prime }+\lambda y&=0 \\ \end{align*}

0.204

3615

14577

\begin{align*} 3 y^{\prime \prime }-14 y^{\prime }-5 y&=0 \\ \end{align*}

0.204

3616

14779

\begin{align*} x^{\prime }+y^{\prime }+2 y&=\sin \left (t \right ) \\ x^{\prime }+y^{\prime }-x-y&=0 \\ \end{align*}

0.204

3617

15703

\begin{align*} y^{\prime \prime }-9 y&=2+x \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.204

3618

17647

\begin{align*} x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 y^{\prime } x +20 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ y^{\prime \prime }\left (1\right ) &= 1 \\ \end{align*}

0.204

3619

17648

\begin{align*} x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 y^{\prime } x +42 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ \end{align*}

0.204

3620

18916

\begin{align*} y_{1}^{\prime }&=-4 y_{1}-y_{2}+2 \,{\mathrm e}^{t} \\ y_{2}^{\prime }&=y_{1}-2 y_{2}+\sin \left (2 t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 2 \\ \end{align*}

0.204

3621

21590

\begin{align*} y^{\left (5\right )}+y^{\prime \prime }&=x^{5}-3 x^{2} \\ \end{align*}

0.204

3622

24590

\begin{align*} y^{\prime \prime }-y&=2 x -3 \\ \end{align*}

0.204

3623

25534

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+\omega ^{2}\right ) y&=0 \\ \end{align*}

0.204

3624

1396

\begin{align*} y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.205

3625

4666

\begin{align*} y^{\prime }&=3 a +3 b x +3 b y^{2} \\ \end{align*}

0.205

3626

6953

\begin{align*} {\mathrm e}^{x} \left (x +1\right )+\left (-x \,{\mathrm e}^{x}+{\mathrm e}^{y} y\right ) y^{\prime }&=0 \\ \end{align*}

0.205

3627

8071

\begin{align*} \left (x +1\right ) y^{\prime }&=x^{2}-2 x +y \\ \end{align*}
Series expansion around \(x=0\).

0.205

3628

9363

\begin{align*} y^{\prime }-\frac {y}{x}&=x^{2} \\ \end{align*}
Series expansion around \(x=0\).

0.205

3629

9634

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.205

3630

9714

\begin{align*} x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\ \end{align*}

0.205

3631

10775

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-6 y&=0 \\ \end{align*}

0.205

3632

11065

\begin{align*} x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y&=0 \\ \end{align*}

0.205

3633

16167

\begin{align*} y^{\prime }&=\cos \left (x \right ) x \\ \end{align*}

0.205

3634

19564

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }&=12 x -2 \\ \end{align*}

0.205

3635

21882

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=2 x^{2}-3 x -17 \\ \end{align*}

0.205

3636

23834

\begin{align*} y^{\prime }&=\frac {t^{2}+1}{t \left (t -2\right )} \\ \end{align*}

0.205

3637

25254

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y&=0 \\ \end{align*}

0.205

3638

3060

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.206

3639

8892

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\ \end{align*}

0.206

3640

10471

\begin{align*} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\ \end{align*}

0.206

3641

15496

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ \end{align*}

0.206

3642

15706

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=-x^{2}+1 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.206

3643

15711

\begin{align*} y^{\prime \prime }+9 y&=18 \,{\mathrm e}^{3 x} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}
Using Laplace transform method.

0.206

3644

23675

\begin{align*} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.206

3645

23825

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=-y \\ \end{align*}

0.206

3646

23832

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {t^{2}+2 t}} \\ \end{align*}

0.206

3647

25081

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=2 \cos \left (t \right )+\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.206

3648

279

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

0.207

3649

530

\begin{align*} x^{\prime \prime }+4 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.207

3650

657

\begin{align*} y^{\prime }&=\frac {10}{x^{2}+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

0.207

3651

857

\begin{align*} y^{\prime \prime }-2 i y^{\prime }+3 y&=0 \\ \end{align*}

0.207

3652

1042

\begin{align*} y^{\prime }&=y \\ \end{align*}
Series expansion around \(x=0\).

0.207

3653

1046

\begin{align*} y^{\prime }&=x^{2} y \\ \end{align*}
Series expansion around \(x=0\).

0.207

3654

1280

\begin{align*} 9 y^{\prime \prime }+9 y^{\prime }-4 y&=0 \\ \end{align*}

0.207

3655

1634

\begin{align*} y^{\prime }-\frac {\left (x +1\right ) y}{3 x}&=y^{4} \\ \end{align*}

0.207

3656

2774

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

0.207

3657

3985

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.207

3658

5522

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}&=x^{2} \\ \end{align*}

0.207

3659

9741

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

0.207

3660

10352

\begin{align*} y^{\prime } x +y&=2 x^{4}+x^{3}+x \\ \end{align*}
Series expansion around \(x=0\).

0.207

3661

10592

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (-x +3\right ) y^{\prime }+4 y&=0 \\ \end{align*}

0.207

3662

10747

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.207

3663

11120

\begin{align*} x^{2} y^{\prime \prime }+x \left (-x +3\right ) y^{\prime }+y&=0 \\ \end{align*}

0.207

3664

11130

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (3 x +2\right ) y&=0 \\ \end{align*}

0.207

3665

12712

\begin{align*} y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2}&=0 \\ \end{align*}

0.207

3666

15413

\begin{align*} y^{\prime \prime }+12 y&=7 y^{\prime } \\ \end{align*}

0.207

3667

16152

\begin{align*} y^{\prime }&=3-\sin \left (x \right ) \\ \end{align*}

0.207

3668

16166

\begin{align*} y^{\prime }&=x \cos \left (x^{2}\right ) \\ \end{align*}

0.207

3669

16181

\begin{align*} y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\ \end{align*}

0.207

3670

16721

\begin{align*} x^{2} y^{\prime \prime }-6 y&=0 \\ \end{align*}

0.207

3671

16819

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=\delta \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.207

3672

17380

\begin{align*} y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\ \end{align*}

0.207

3673

18891

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\cos \left (2 t \right ) t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.207

3674

22643

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

0.207

3675

23258

\begin{align*} y^{\prime }&={\mathrm e}^{2 x} \\ \end{align*}

0.207

3676

25255

\begin{align*} t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\ \end{align*}

0.207

3677

4122

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

0.208

3678

4492

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime }-4 y&=50 \,{\mathrm e}^{2 x}+50 \sin \left (x \right ) \\ \end{align*}

0.208

3679

5814

\begin{align*} b \,{\mathrm e}^{2 a x} y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.208

3680

6885

\begin{align*} y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \\ \end{align*}

0.208

3681

9063

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\ \end{align*}

0.208

3682

10596

\begin{align*} x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y&=0 \\ \end{align*}

0.208

3683

11021

\begin{align*} 4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y&=0 \\ \end{align*}

0.208

3684

14150

\begin{align*} y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

0.208

3685

15144

\begin{align*} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime }&=y x \\ \end{align*}

0.208

3686

23662

\begin{align*} y^{\prime \prime \prime }+8 y&=-12 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= -8 \\ y^{\prime }\left (0\right ) &= 24 \\ y^{\prime \prime }\left (0\right ) &= -46 \\ \end{align*}
Using Laplace transform method.

0.208

3687

23716

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.208

3688

23975

\begin{align*} y^{\prime \prime }-2 y^{\prime }-4 y&=0 \\ \end{align*}

0.208

3689

24601

\begin{align*} 4 y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

0.208

3690

24850

\begin{align*} y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x&=0 \\ \end{align*}

0.208

3691

25080

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (3 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.208

3692

278

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\ \end{align*}

0.209

3693

3059

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&=0 \\ \end{align*}

0.209

3694

3062

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\ \end{align*}

0.209

3695

5815

\begin{align*} b \,{\mathrm e}^{k x} y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.209

3696

7632

\begin{align*} y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.209

3697

9215

\begin{align*} 2 y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

0.209

3698

10052

\begin{align*} 3 y y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

0.209

3699

10259

\begin{align*} y^{\prime }&=0 \\ \end{align*}

0.209

3700

10763

\begin{align*} \left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y&=0 \\ \end{align*}

0.209