2.4.3 Problem 3
Internal
problem
ID
[10348]
Book
:
First
order
enumerated
odes
Section
:
section
4.
First
order
odes
solved
using
series
method
Problem
number
:
3
Date
solved
:
Thursday, November 27, 2025 at 10:34:54 AM
CAS
classification
:
[_separable]
\begin{align*}
y^{\prime } x +y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*}
Series expansion around
\(x=0\).
\begin{align*}
y^{\prime } x +y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*}
Series expansion around
\(x=0\).
Let the homogeneous solution be represented as Frobenius power series of the form
\[
y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}
\]
Then
\[
y^{\prime } = \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}
\]
Substituting the above back into the ode gives
\begin{equation}
\tag{1} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right ) x +\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
Which simplifies to
\begin{equation}
\tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
The next step is to make all
powers of
\(x\) be
\(n +r\) in each summation term. Going over each summation term above with power of
\(x\) in
it which is not already
\(x^{n +r}\) and adjusting the power and the corresponding index gives Substituting all
the above in Eq (2A) gives the following equation where now all powers of
\(x\) are the same and equal
to
\(n +r\).
\begin{equation}
\tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
The indicial equation is obtained from
\(n=0\). From Eq (2) this gives
\[
a_{n} x^{n +r} \left (n +r \right )+a_{n} x^{n +r} = 0
\]
When
\(n=0\) the above becomes
\[
a_{0} x^{r} r +a_{0} x^{r} = 0
\]
Since
\(a_{0}\neq 0\) then the indicial equation becomes
\[
\left (r +1\right ) x^{r} = 0
\]
Since the above is true for all
\(x\) then the
indicial equation simplifies to
\[
r +1 = 0
\]
Solving for
\(r\) gives the root of the indicial equation as
\[ r=-1 \]
Replacing \(r=-1\) found above results in
\[
\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n -1} \left (n -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n -1}\right ) = 0
\]
From the above we see that there is no recurrence relation since
there is only one summation term. Therefore all
\(a_{n}\) terms are zero except for
\(a_{0}\). Hence
\begin{align*} y_h &= a_{0} \left (\frac {1}{x}+O\left (x^{6}\right )\right ) \end{align*}
The solution is
\[
y = c_1 \left (\frac {1}{x}+O\left (x^{6}\right )\right )
\]
Applying initial conditions shows that no solution is possible, (Steps will be added
soon)
✗ Maple
Order:=6;
ode:=diff(y(x),x)*x+y(x) = 0;
ic:=[y(0) = 1];
dsolve([ode,op(ic)],y(x),type='series',x=0);
\[ \text {No solution found} \]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [x \left (\frac {d}{d x}y \left (x \right )\right )+y \left (x \right )=0, y \left (0\right )=1\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )}=-\frac {1}{x} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )}d x =\int -\frac {1}{x}d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y \left (x \right )\right )=-\ln \left (x \right )+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\frac {{\mathrm e}^{\mathit {C1}}}{x} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {\mathit {C1}}{x} \\ \bullet & {} & \textrm {Solution does not satisfy initial condition}\hspace {3pt} \end {array} \]
✗ Mathematica
ode=x*D[y[x],x]+y[x]==0;
ic=y[0]==1;
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
Not solved
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x*Derivative(y(x), x) + y(x),0)
ics = {y(0): 1}
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
ValueError : ODE x*Derivative(y(x), x) + y(x) does not match hint 1st_power_series