| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 2601 |
\begin{align*}
y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y&=72 \,{\mathrm e}^{3 x}+729 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2602 |
\begin{align*}
x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2603 |
\begin{align*}
x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.157 |
|
| 2604 |
\begin{align*}
x y y^{\prime \prime }&=y^{\prime }+{y^{\prime }}^{3} \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
0.157 |
|
| 2605 |
\begin{align*}
y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.157 |
|
| 2606 |
\begin{align*}
2 y^{\prime \prime } x +\left (4 x +1\right ) y^{\prime }+\left (2 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.157 |
|
| 2607 |
\begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2608 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.157 |
|
| 2609 |
\begin{align*}
2 y-y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.157 |
|
| 2610 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.157 |
|
| 2611 |
\begin{align*}
y^{\prime \prime \prime }&=f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2612 |
\begin{align*}
y&=y^{\prime } x +1+4 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2613 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2614 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2615 |
\begin{align*}
t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(t=2\). |
✗ |
✗ |
✓ |
✗ |
0.158 |
|
| 2616 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }&=\cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2617 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2618 | \begin{align*}
y+y^{\prime }&=5 \,{\mathrm e}^{t} \sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.158 |
|
| 2619 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=10 \cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2620 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+4 y&=20 \sin \left (2 t \right ) \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2621 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+15 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2622 |
\begin{align*}
y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y&=\cos \left (2 x +3\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2623 |
\begin{align*}
y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y&=32 \,{\mathrm e}^{2 x}+16 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2624 |
\begin{align*}
2 y y^{\prime \prime }&=y^{2} \left (a x +b y\right )+{y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.158 |
|
| 2625 |
\begin{align*}
{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.158 |
|
| 2626 |
\begin{align*}
x^{2} y^{3}-x^{3} y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2627 |
\begin{align*}
y^{\prime } x +y&=\frac {1}{x^{3}} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.158 |
|
| 2628 |
\begin{align*}
2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.158 |
|
| 2629 |
\begin{align*}
y^{\prime \prime } x +\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.158 |
|
| 2630 |
\begin{align*}
x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.158 |
|
| 2631 |
\begin{align*}
y^{\prime \prime }-2 a^{2} y^{3}+2 a b x y-b&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.158 |
|
| 2632 |
\(\left [\begin {array}{cc} 11 & 9 \\ -16 & -13 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.158 |
|
| 2633 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+7 y&=165 \,{\mathrm e}^{4 t} \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2634 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 y^{\prime } x +140 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2635 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2636 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.158 |
|
| 2637 |
\begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2638 | \begin{align*}
y^{\prime \prime \prime }-y&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.158 |
|
| 2639 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| 2640 |
\begin{align*}
t x^{\prime \prime }-\left (4 t +1\right ) x^{\prime }+2 \left (2 t +1\right ) x&=0 \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.159 |
|
| 2641 |
\begin{align*}
y^{\prime }+\sin \left (t \right ) y&=0 \\
y \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2642 |
\begin{align*}
y^{\left (5\right )}-3 y^{\prime \prime \prime }+y&=9 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2643 |
\begin{align*}
-3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&=3 x^{2}+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2644 |
\begin{align*}
2 y x +\left (a +x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2645 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.159 |
|
| 2646 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+4 x y^{\prime } y-5 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2647 |
\begin{align*}
-2 y+y^{\prime }&=t^{3} \\
y \left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2648 |
\begin{align*}
y^{\prime \prime }-4 y&=t^{3} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2649 |
\begin{align*}
y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
y^{\prime \prime }\left (0\right ) &= -1 \\
y^{\prime \prime \prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2650 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2651 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= -2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| 2652 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.160 |
|
| 2653 |
\begin{align*}
6 y+18 y^{\prime } x +9 x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.160 |
|
| 2654 |
\begin{align*}
x^{\prime }+y^{\prime }-x&=t +y \\
x^{\prime }+y^{\prime }&=2 x+3 y+{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.160 |
|
| 2655 |
\begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y&=3 \,{\mathrm e}^{x} x^{2}-7 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.160 |
|
| 2656 |
\begin{align*}
y^{\prime \prime }&={\mathrm e}^{t} \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.160 |
|
| 2657 | \begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=\infty \). | ✗ | ✗ | ✓ | ✓ | 0.160 |
|
| 2658 |
\begin{align*}
x^{\prime }&=x+y+z \\
y^{\prime }&=2 x+5 y+3 z \\
z^{\prime }&=3 x+9 y+5 z \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -2 \\
y \left (0\right ) &= -1 \\
z \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.160 |
|
| 2659 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.160 |
|
| 2660 |
\begin{align*}
y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y&={\mathrm e}^{2 x} \cos \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.160 |
|
| 2661 |
\begin{align*}
x^{\prime \prime }+6 x^{\prime }+25 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2662 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
y^{\prime \prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2663 |
\begin{align*}
y^{\prime \prime \prime }-5 y^{\prime \prime }+3 y^{\prime }+9 y&=2 \,{\mathrm e}^{3 x} \left (11-24 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2664 |
\begin{align*}
2 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-y&={\mathrm e}^{x} \left (11+12 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2665 |
\begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2666 |
\begin{align*}
y^{\prime \prime \prime }-12 y^{\prime }+16 y&=32 x -8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2667 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=3 \cos \left (t \right )+\sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2668 |
\begin{align*}
\left (x +1\right ) \left (y^{\prime }+y^{2}\right )-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2669 |
\begin{align*}
\sqrt {x}\, y^{\prime \prime }&=y^{{3}/{2}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.161 |
|
| 2670 |
\begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime \prime }&=\left (1+y^{2}\right ) \left (-y+y^{\prime } x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.161 |
|
| 2671 |
\begin{align*}
{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2672 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2673 |
\begin{align*}
y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2674 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2675 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2676 |
\begin{align*}
\left (-x +3\right ) y-x \left (4-x \right ) y^{\prime }+2 \left (-x +2\right ) x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.161 |
|
| 2677 | \begin{align*}
y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.161 |
|
| 2678 |
\begin{align*}
x y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-24&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2679 |
\begin{align*}
x^{2} y^{\prime \prime }&=a \left (y^{n}-y\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.161 |
|
| 2680 |
\begin{align*}
y y^{\prime \prime }+y^{2}-a x -b&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
0.161 |
|
| 2681 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\
y \left (2\right ) &= 0 \\
y^{\prime }\left (2\right ) &= 2 \\
y^{\prime \prime }\left (2\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2682 |
\begin{align*}
y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2683 |
\begin{align*}
y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y&=108 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2684 |
\begin{align*}
x^{\prime }+x&=2 \sin \left (t \right ) \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2685 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=\cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2686 |
\begin{align*}
x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}\right ) y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2687 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2688 |
\begin{align*}
y^{\prime }&=t +3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2689 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=4 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| 2690 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| 2691 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
y^{\prime \prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| 2692 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=x^{2} {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| 2693 |
\begin{align*}
2 y y^{\prime \prime }&=4 y^{2} \left (x +2 y\right )+{y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.162 |
|
| 2694 |
\begin{align*}
x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| 2695 |
\begin{align*}
2 y^{3}+2+3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| 2696 |
\begin{align*}
8 y-8 y^{\prime } x +4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| 2697 | \begin{align*}
4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.162 |
|
| 2698 |
\begin{align*}
y^{\prime \prime } x -\left (4 x +1\right ) y^{\prime }+\left (2+4 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.162 |
|
| 2699 |
\begin{align*}
28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.162 |
|
| 2700 |
\begin{align*}
8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.162 |
|