| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 2501 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=8 \,{\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
y^{\prime \prime }\left (0\right ) &= 4 \\
y^{\prime \prime \prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2502 |
\begin{align*}
x^{\prime }-3 x&=3 t^{3}+3 t^{2}+2 t +1 \\
x \left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2503 |
\begin{align*}
y^{\prime \prime }+t y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2504 |
\begin{align*}
y_{1}^{\prime }&=-4 y_{1}-y_{2} \\
y_{2}^{\prime }&=y_{1}-2 y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2505 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y&=16 x^{2}+256 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2506 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2507 |
\begin{align*}
x^{\prime }-3 x-6 y&=27 t^{2} \\
x^{\prime }+y^{\prime }-3 y&=5 \,{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 5 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2508 |
\begin{align*}
t x^{\prime \prime }+\left (t -2\right ) x^{\prime }+x&=0 \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.153 |
|
| 2509 |
\begin{align*}
2 y^{3}+3 y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2510 |
\begin{align*}
8 y^{\prime \prime \prime }-12 y^{\prime \prime }+6 y^{\prime }-y&={\mathrm e}^{\frac {x}{2}} \left (4 x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2511 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2512 |
\begin{align*}
a \,x^{k} y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.153 |
|
| 2513 |
\begin{align*}
y^{\prime }+4 y&={\mathrm e}^{-4 t} \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2514 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+20 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2515 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.153 |
|
| 2516 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.153 |
|
| 2517 |
\begin{align*}
y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= -8 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2518 | \begin{align*}
4 y^{\prime \prime }+16 y^{\prime }+17 y&=17 t -1 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.153 |
|
| 2519 |
\begin{align*}
y^{\prime \prime }-y^{2}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.153 |
|
| 2520 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 y^{\prime } x +100 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2521 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2522 |
\begin{align*}
y^{\left (5\right )}-y^{\prime \prime \prime }&=x +2 \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2523 |
\begin{align*}
y^{\left (5\right )}-y^{\prime \prime \prime \prime }+2 y^{\prime }-y&=x^{4}-2 x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2524 |
\begin{align*}
y^{\prime \prime }+9 y&=3 x -6 \\
y \left (0\right ) &= {\frac {1}{3}} \\
y^{\prime }\left (0\right ) &= {\frac {4}{3}} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| 2525 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-12 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2526 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+4 y&=20 \sin \left (2 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2527 |
\begin{align*}
y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2528 |
\begin{align*}
2 y x +\left (y^{2}-3 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.154 |
|
| 2529 |
\begin{align*}
y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2530 |
\begin{align*}
\frac {{y^{\prime }}^{2}}{4}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2531 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.154 |
|
| 2532 |
\begin{align*}
y^{\prime \prime } x -\left (4 x +1\right ) y^{\prime }+\left (2+4 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.154 |
|
| 2533 |
\begin{align*}
x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.154 |
|
| 2534 |
\begin{align*}
x \left (x -1\right )^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.154 |
|
| 2535 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.154 |
|
| 2536 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.154 |
|
| 2537 | \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.154 |
|
| 2538 |
\begin{align*}
y^{\prime \prime }+d +b x y+c y+a y^{3}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.154 |
|
| 2539 |
\begin{align*}
{y^{\prime }}^{2}&=9 y^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2540 |
\begin{align*}
y^{\left (6\right )}-64 y&={\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2541 |
\begin{align*}
y^{\prime \prime }-9 y&=24 \,{\mathrm e}^{-3 t} \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2542 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=\cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2543 |
\begin{align*}
y_{1}^{\prime }&=5 y_{1}-2 y_{2} \\
y_{2}^{\prime }&=6 y_{1}-2 y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2544 |
\begin{align*}
y^{\prime }+z&=t \\
z^{\prime }+4 y&=0 \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 1 \\
z \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2545 |
\begin{align*}
\left (y^{\prime }-2 x \right ) \left (y^{\prime }-3 x^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2546 |
\begin{align*}
y^{\prime \prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2547 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }-5 x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2548 |
\begin{align*}
x^{5} y^{\left (5\right )}+3 x^{3} y^{\prime \prime \prime }-9 x^{2} y^{\prime \prime }+18 y^{\prime } x -18 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2549 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2550 |
\begin{align*}
y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| 2551 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2552 |
\begin{align*}
2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2553 |
\begin{align*}
4 \,{\mathrm e}^{2 x}+2 y x -y^{2}+\left (x -y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.155 |
|
| 2554 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2555 |
\begin{align*}
y^{\prime \prime }+4 y&=9 \sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2556 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2557 | \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.155 |
|
| 2558 |
\begin{align*}
x y y^{\prime \prime }&=x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.155 |
|
| 2559 |
\begin{align*}
\left (-a^{2}+1\right ) x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.155 |
|
| 2560 |
\begin{align*}
y^{2}+\left (2 y x +\cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2561 |
\begin{align*}
x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.155 |
|
| 2562 |
\begin{align*}
x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.155 |
|
| 2563 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.155 |
|
| 2564 |
\begin{align*}
y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2565 |
\begin{align*}
{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2566 |
\begin{align*}
x^{\prime }+y^{\prime }+x&=0 \\
x^{\prime }-x+2 y^{\prime }&={\mathrm e}^{-t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2567 |
\begin{align*}
y^{\prime \prime }&=\operatorname {Heaviside}\left (t -2\right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2568 |
\begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2569 |
\begin{align*}
y^{\left (5\right )}-y^{\prime \prime \prime \prime }&=x \,{\mathrm e}^{x}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2570 |
\begin{align*}
y_{1}^{\prime }&=2 y_{1}-64 y_{2} \\
y_{2}^{\prime }&=y_{1}-14 y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2571 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 t^{2} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2572 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=x-y \\
z^{\prime }&=2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 0 \\
z \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2573 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=8 \,{\mathrm e}^{t}+5 t \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2574 |
\begin{align*}
2 y^{\prime \prime }+8 y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| 2575 |
\begin{align*}
x^{\prime \prime }+9 x&=0 \\
x \left (0\right ) &= 3 \\
x^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2576 |
\begin{align*}
y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-2 y&=-3 \,{\mathrm e}^{2 x} \left (11+12 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2577 | \begin{align*}
4 y^{\prime \prime \prime \prime }-11 y^{\prime \prime }-9 y^{\prime }-2 y&=-{\mathrm e}^{x} \left (1-6 x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.156 |
|
| 2578 |
\begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2579 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-2 y&=-{\mathrm e}^{3 x} \left (17 x^{2}+67 x +9\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2580 |
\begin{align*}
y^{\prime \prime }-y&=8 \sin \left (t \right )-6 \cos \left (t \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2581 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2582 |
\begin{align*}
\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2583 |
\begin{align*}
y^{\prime \prime }-\frac {y}{4}&=0 \\
y \left (0\right ) &= 12 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2584 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.156 |
|
| 2585 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.156 |
|
| 2586 |
\begin{align*}
4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.156 |
|
| 2587 |
\begin{align*}
4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.156 |
|
| 2588 |
\begin{align*}
\left (-a^{2}+1\right ) x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.156 |
|
| 2589 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }-x y^{n}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.156 |
|
| 2590 |
\begin{align*}
y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.156 |
|
| 2591 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=2 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2592 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+3 x y^{\prime } y+2 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2593 |
\begin{align*}
y^{\prime }+2 x&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2594 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| 2595 |
\begin{align*}
2 y^{\prime \prime }-7 y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2596 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2597 | \begin{align*}
2 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-5 y^{\prime }-2 y&=18 \,{\mathrm e}^{x} \left (5+2 x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.157 |
|
| 2598 |
\begin{align*}
2 t y+y^{\prime }&=t \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2599 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime }&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| 2600 |
\begin{align*}
\cos \left (y x \right )-x y \sin \left (y x \right )-x^{2} \sin \left (y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.157 |
|