2.2.19 Problems 1801 to 1900

Table 2.51: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

1801

\begin{align*} \left (3 x -1\right ) \left (y^{\prime }+y^{2}\right )-\left (3 x +2\right ) y-6 x +8&=0 \\ \end{align*}

[_rational, _Riccati]

4.498

1802

\begin{align*} x^{2} \left (y^{\prime }+y^{2}\right )+y x +x^{2}-\frac {1}{4}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.033

1803

\begin{align*} x^{2} \left (y^{\prime }+y^{2}\right )-7 y x +7&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.625

1804

\begin{align*} y^{\prime \prime }+9 y&=\tan \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.763

1805

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (2 x \right ) \sec \left (2 x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.876

1806

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\frac {4}{1+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.456

1807

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=3 \,{\mathrm e}^{x} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.485

1808

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=14 x^{{3}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

1809

\begin{align*} y^{\prime \prime }-y&=\frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.521

1810

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=2 x^{2}+2 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.905

1811

\begin{align*} y^{\prime \prime } x +\left (-2 x +2\right ) y^{\prime }+\left (x -2\right ) y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

1812

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.614

1813

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=4 \,{\mathrm e}^{-x \left (2+x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.597

1814

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{{5}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.691

1815

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.138

1816

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=\left (2 x +1\right )^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.439

1817

\begin{align*} 2 y^{\prime \prime } x +2 y^{\prime }+2 y&=\sin \left (\sqrt {x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.458

1818

\begin{align*} y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=6 \,{\mathrm e}^{x} x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.354

1819

\begin{align*} x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y&=x^{a +1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.405

1820

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=\cos \left (x \right ) x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.746

1821

\begin{align*} y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=8 x^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.399

1822

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right )\right ) y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.319

1823

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=8 x^{{5}/{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.858

1824

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y&=x^{{7}/{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.766

1825

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y&=3 x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.847

1826

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y&={\mathrm e}^{x} x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.618

1827

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=x^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.558

1828

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y&={\mathrm e}^{x} x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.810

1829

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y&=2 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.513

1830

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.715

1831

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=2 \left (x -1\right )^{2} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.947

1832

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y&=x^{{5}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.845

1833

\begin{align*} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y&=\left (3 x -1\right )^{2} {\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.609

1834

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=\left (x -1\right )^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.733

1835

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y&=\left (x -1\right )^{3} {\mathrm e}^{x} \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.772

1836

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.463

1837

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=-2 x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.411

1838

\begin{align*} \left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y&=\left (2 x +3\right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.322

1839

\begin{align*} \left (2+x \right ) y^{\prime \prime }+y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.434

1840

\begin{align*} \left (3 x^{2}+1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.461

1841

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }+\left (2-3 x \right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.468

1842

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x +2\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.461

1843

\begin{align*} \left (3 x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.386

1844

\begin{align*} y^{\prime \prime } x +\left (4+2 x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

[[_2nd_order, _with_linear_symmetries]]

0.540

1845

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -3 y x&=0 \\ \end{align*}
Series expansion around \(x=2\).

[[_Emden, _Fowler]]

0.549

1846

\begin{align*} \left (-x +2\right ) y^{\prime \prime }+2 y&=0 \\ y \left (0\right ) &= a_{0} \\ y^{\prime }\left (0\right ) &= a_{1} \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.355

1847

\begin{align*} \left (x +1\right ) y^{\prime \prime }+2 \left (x -1\right )^{2} y^{\prime }+3 y&=0 \\ y \left (1\right ) &= a_{0} \\ y^{\prime }\left (1\right ) &= a_{1} \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.482

1848

\begin{align*} \left (1-x \right ) x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (-x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.940

1849

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (6 x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.824

1850

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (-x^{2}-6 x +1\right ) y^{\prime }+\left (x^{2}+6 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.667

1851

\begin{align*} x^{2} \left (1+3 x \right ) y^{\prime \prime }+x \left (x^{2}+12 x +2\right ) y^{\prime }+2 x \left (x +3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.737

1852

\begin{align*} x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.647

1853

\begin{align*} x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.825

1854

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.382

1855

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.325

1856

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.339

1857

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.390

1858

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.398

1859

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x +\frac {y}{4}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.392

1860

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x -4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.385

1861

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.376

1862

\begin{align*} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.331

1863

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.339

1864

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.368

1865

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }-9 y^{\prime } x -6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.384

1866

\begin{align*} \left (8 x^{2}+1\right ) y^{\prime \prime }+2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.374

1867

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _missing_x]]

0.299

1868

\begin{align*} y^{\prime \prime }-\left (x -3\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.361

1869

\begin{align*} \left (2 x^{2}-4 x +1\right ) y^{\prime \prime }+10 \left (x -1\right ) y^{\prime }+6 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.451

1870

\begin{align*} \left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y&=0 \\ \end{align*}
Series expansion around \(x=2\).

[[_2nd_order, _with_linear_symmetries]]

0.441

1871

\begin{align*} \left (3 x^{2}+6 x +5\right ) y^{\prime \prime }+9 \left (x +1\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.445

1872

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }-y^{\prime } x -3 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.361

1873

\begin{align*} y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y&=0 \\ y \left (3\right ) &= -2 \\ y^{\prime }\left (3\right ) &= 3 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _with_linear_symmetries]]

0.370

1874

\begin{align*} \left (3 x^{2}-6 x +5\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+12 y&=0 \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.444

1875

\begin{align*} \left (4 x^{2}-24 x +37\right ) y^{\prime \prime }+y&=0 \\ y \left (3\right ) &= 4 \\ y^{\prime }\left (3\right ) &= -6 \\ \end{align*}
Series expansion around \(x=3\).

[[_Emden, _Fowler]]

0.383

1876

\begin{align*} \left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y&=0 \\ y \left (4\right ) &= 3 \\ y^{\prime }\left (4\right ) &= -4 \\ \end{align*}
Series expansion around \(x=4\).

[[_2nd_order, _with_linear_symmetries]]

0.408

1877

\begin{align*} \left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y&=0 \\ y \left (-1\right ) &= 3 \\ y^{\prime }\left (-1\right ) &= -3 \\ \end{align*}
Series expansion around \(x=-1\).

[[_2nd_order, _with_linear_symmetries]]

0.434

1878

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.362

1879

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 \alpha y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.379

1880

\begin{align*} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.249

1881

\begin{align*} \left (-2 x^{3}+1\right ) y^{\prime \prime }-10 x^{2} y^{\prime }-8 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.421

1882

\begin{align*} \left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.418

1883

\begin{align*} \left (-2 x^{3}+1\right ) y^{\prime \prime }+6 x^{2} y^{\prime }+24 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.380

1884

\begin{align*} \left (-x^{3}+1\right ) y^{\prime \prime }+15 x^{2} y^{\prime }-36 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.465

1885

\begin{align*} \left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.401

1886

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.235

1887

\begin{align*} y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.299

1888

\begin{align*} \left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.348

1889

\begin{align*} \left (-x^{6}+1\right ) y^{\prime \prime }-12 x^{5} y^{\prime }-30 x^{4} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.380

1890

\begin{align*} y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.329

1891

\begin{align*} \left (1+3 x \right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.403

1892

\begin{align*} \left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+8 x \right ) y^{\prime }+4 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.427

1893

\begin{align*} \left (-2 x^{2}+1\right ) y^{\prime \prime }+\left (2-6 x \right ) y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.426

1894

\begin{align*} \left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.447

1895

\begin{align*} \left (2+x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.392

1896

\begin{align*} \left (x^{2}+3 x +3\right ) y^{\prime \prime }+\left (6+4 x \right ) y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.455

1897

\begin{align*} \left (x +4\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.394

1898

\begin{align*} \left (2 x^{2}-3 x +2\right ) y^{\prime \prime }-\left (4-6 x \right ) y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.510

1899

\begin{align*} \left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y&=0 \\ y \left (-1\right ) &= 1 \\ y^{\prime }\left (-1\right ) &= -1 \\ \end{align*}
Series expansion around \(x=-1\).

[[_2nd_order, _with_linear_symmetries]]

0.495

1900

\begin{align*} \left (x^{2}-x +1\right ) y^{\prime \prime }-\left (1-4 x \right ) y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.507