2.2.18 Problems 1701 to 1800

Table 2.49: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

1701

\begin{align*} 7 x +4 y+\left (4 x +3 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.189

1702

\begin{align*} {\mathrm e}^{x} \left (x^{4} y^{2}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _Bernoulli]

2.894

1703

\begin{align*} y^{4} x^{3}+x +\left (y^{3} x^{4}+y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.382

1704

\begin{align*} 3 x^{2}+2 y+\left (2 y+2 x \right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.505

1705

\begin{align*} y^{4} x^{3}+2 x +\left (y^{3} x^{4}+3 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.417

1706

\begin{align*} x^{2}+y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

4.438

1707

\begin{align*} y^{\prime }+\frac {2 y}{x}&=-\frac {2 x y}{x^{2}+2 x^{2} y+1} \\ y \left (1\right ) &= -2 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.444

1708

\begin{align*} y^{\prime }-\frac {3 y}{x}&=\frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.379

1709

\begin{align*} y^{\prime }+2 y x&=-\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

7.093

1710

\begin{align*} y+\left (2 x +\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.108

1711

\begin{align*} x^{2} y^{\prime }-y^{2}&=0 \\ \end{align*}

[_separable]

2.517

1712

\begin{align*} y-y^{\prime } x&=0 \\ \end{align*}

[_separable]

1.579

1713

\begin{align*} 3 x^{2} y+2 x^{3} y^{\prime }&=0 \\ \end{align*}

[_separable]

2.112

1714

\begin{align*} 2 y^{3}+3 y^{2} y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.153

1715

\begin{align*} 5 y x +2 y+5+2 y^{\prime } x&=0 \\ \end{align*}

[_linear]

0.785

1716

\begin{align*} y x +x +2 y+1+\left (x +1\right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

1.448

1717

\begin{align*} 27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.318

1718

\begin{align*} 6 x y^{2}+2 y+\left (12 x^{2} y+6 x +3\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17.632

1719

\begin{align*} y^{2}+\left (x y^{2}+6 y x +\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.740

1720

\begin{align*} 12 x^{3} y+24 y^{2} x^{2}+\left (9 x^{4}+32 x^{3} y+4 y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

50.786

1721

\begin{align*} x^{2} y+4 y x +2 y+\left (x^{2}+x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.434

1722

\begin{align*} -y+\left (x^{4}-x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

1.852

1723

\begin{align*} \cos \left (x \right ) \cos \left (y\right )+\left (\cos \left (y\right ) \sin \left (x \right )-\sin \left (x \right ) \sin \left (y\right )+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

30.400

1724

\begin{align*} 2 y x +y^{2}+\left (2 y x +x^{2}-2 y^{2} x^{2}-2 x y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

1.916

1725

\begin{align*} \sin \left (y\right ) y+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.925

1726

\begin{align*} a y+b x y+\left (c x +d x y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.047

1727

\begin{align*} 3 x^{2} y^{3}-y^{2}+y+\left (-y x +2 x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

4.039

1728

\begin{align*} 2 y+3 \left (x^{2}+x^{2} y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.861

1729

\begin{align*} a \cos \left (x \right ) y-\sin \left (x \right ) y^{2}+\left (b \cos \left (x \right ) y-x \sin \left (x \right ) y\right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

0.450

1730

\begin{align*} y^{4} x^{4}+x^{5} y^{3} y^{\prime }&=0 \\ \end{align*}

[_separable]

0.089

1731

\begin{align*} y \left (\cos \left (x \right ) x +2 \sin \left (x \right )\right )+x \left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.691

1732

\begin{align*} y^{3} x^{4}+y+\left (x^{5} y^{2}-x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.839

1733

\begin{align*} 3 y x +2 y^{2}+y+\left (x^{2}+2 y x +x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.331

1734

\begin{align*} 12 y x +6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.216

1735

\begin{align*} 3 y^{2} x^{2}+2 y+2 y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.567

1736

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.325

1737

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.368

1738

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= k_{0} \\ y^{\prime }\left (0\right ) &= k_{1} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.290

1739

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.394

1740

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= k_{0} \\ y^{\prime }\left (0\right ) &= k_{1} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.349

1741

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= -5 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.872

1742

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.192

1743

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

1744

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

1745

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.193

1746

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.871

1747

\begin{align*} x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.678

1748

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.411

1749

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.664

1750

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

1751

\begin{align*} 4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+\cos \left (x \right ) x \right ) y^{\prime }+\left (2 \cos \left (x \right ) x +3 \sin \left (x \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.589

1752

\begin{align*} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\left (6 x -8\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.617

1753

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.582

1754

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.463

1755

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.634

1756

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=\left (2 x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.250

1757

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {4}{x^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.197

1758

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.217

1759

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\frac {1}{1+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.257

1760

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=7 x^{{3}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.250

1761

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \left (4 x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.308

1762

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.280

1763

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=8 \,{\mathrm e}^{-x \left (2+x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.267

1764

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=-6 x -4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.233

1765

\begin{align*} x^{2} y^{\prime \prime }+2 x \left (x -1\right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y&=x^{3} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.273

1766

\begin{align*} x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.257

1767

\begin{align*} \left (1-2 x \right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y&=\left (4 x^{2}-4 x +1\right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.264

1768

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=4 x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.222

1769

\begin{align*} 2 y^{\prime \prime } x +\left (4 x +1\right ) y^{\prime }+\left (2 x +1\right ) y&=3 \sqrt {x}\, {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.257

1770

\begin{align*} y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=-{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.266

1771

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y&=4 x^{{5}/{2}} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.269

1772

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=4 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.220

1773

\begin{align*} y^{\prime \prime } x +\left (-2 x +2\right ) y^{\prime }+\left (x -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.098

1774

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.095

1775

\begin{align*} x^{2} \ln \left (x \right )^{2} y^{\prime \prime }-2 x \ln \left (x \right ) y^{\prime }+\left (2+\ln \left (x \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.099

1776

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.184

1777

\begin{align*} y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.106

1778

\begin{align*} x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.097

1779

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.098

1780

\begin{align*} y^{\prime \prime } x -\left (4 x +1\right ) y^{\prime }+\left (2+4 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.108

1781

\begin{align*} 4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+\cos \left (x \right ) x \right ) y^{\prime }+\left (2 \cos \left (x \right ) x +3 \sin \left (x \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.141

1782

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.122

1783

\begin{align*} \left (2 x +1\right ) x y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.103

1784

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.108

1785

\begin{align*} y^{\prime \prime } x -\left (4 x +1\right ) y^{\prime }+\left (2+4 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.105

1786

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=4 x^{4} \\ y \left (-1\right ) &= 7 \\ y^{\prime }\left (-1\right ) &= -8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.325

1787

\begin{align*} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.224

1788

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y&=\left (x +1\right )^{3} {\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.398

1789

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=x^{2} \\ y \left (1\right ) &= {\frac {5}{4}} \\ y^{\prime }\left (1\right ) &= {\frac {3}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.312

1790

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2+x \\ y \left (0\right ) &= -{\frac {1}{3}} \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.366

1791

\begin{align*} y^{\prime }+y^{2}+k^{2}&=0 \\ \end{align*}

[_quadrature]

2.237

1792

\begin{align*} y^{\prime }+y^{2}-3 y+2&=0 \\ \end{align*}

[_quadrature]

0.577

1793

\begin{align*} y^{\prime }+y^{2}+5 y-6&=0 \\ \end{align*}

[_quadrature]

0.623

1794

\begin{align*} y^{\prime }+y^{2}+8 y+7&=0 \\ \end{align*}

[_quadrature]

0.569

1795

\begin{align*} y^{\prime }+y^{2}+14 y+50&=0 \\ \end{align*}

[_quadrature]

0.315

1796

\begin{align*} 6 y^{\prime }+6 y^{2}-y-1&=0 \\ \end{align*}

[_quadrature]

0.592

1797

\begin{align*} 36 y^{\prime }+36 y^{2}-12 y+1&=0 \\ \end{align*}

[_quadrature]

0.280

1798

\begin{align*} x^{2} \left (y^{\prime }+y^{2}\right )-x \left (2+x \right ) y+x +2&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.095

1799

\begin{align*} y^{\prime }+y^{2}+4 y x +4 x^{2}+2&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.601

1800

\begin{align*} \left (2 x +1\right ) \left (y^{\prime }+y^{2}\right )-2 y-2 x -3&=0 \\ \end{align*}

[_rational, _Riccati]

4.131