| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.198 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=-x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| \begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=-x-2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
x^{\prime }&=4 x+6 y \\
y^{\prime }&=-7 x-9 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=-x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
x^{\prime }&=-2 x+y-x^{2}+2 y^{2} \\
y^{\prime }&=3 x+2 y+x^{2} y^{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.027 |
|
| \begin{align*}
x^{\prime }&=-x+x^{2} \\
y^{\prime }&=-3 y+x y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.029 |
|
| \begin{align*}
x^{\prime }&=-x+x y \\
y^{\prime }&=y+\left (x^{2}+y^{2}\right )^{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.031 |
|
| \begin{align*}
x^{\prime }&=2 x+y^{2} \\
y^{\prime }&=3 y-x^{2} \\
\end{align*} | system_of_ODEs | ✗ | ✗ | ✗ | ✗ | 0.030 |
|
| \begin{align*}
x^{\prime }&=x-x y \\
y^{\prime }&=-y+x y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.023 |
|
| \begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=x-3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| \begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=2 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
x^{\prime }&=-2 x-3 y \\
y^{\prime }&=-3 x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| \begin{align*}
x^{\prime }&=-3 x+2 y \\
y^{\prime }&=-2 x-3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
x^{\prime }&=-3 x+2 y \\
y^{\prime }&=-2 x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.563 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{t^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime }&=\cos \left (t \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.199 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{t^{2}-1} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{t} t \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {t^{2}+2 t}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
y^{\prime }&=t \ln \left (t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}+1}{t \left (t -2\right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| \begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
43.588 |
|
| \begin{align*}
y^{\prime }&=x -y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.799 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}-\frac {x}{y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.799 |
|
| \begin{align*}
y^{\prime }&=1-\frac {y^{2}}{x} \\
\end{align*} | [_rational, _Riccati] | ✓ | ✓ | ✓ | ✗ | 2.365 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.199 |
|
| \begin{align*}
y^{\prime }&=t +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.816 |
|
| \begin{align*}
y^{2} y^{\prime }-y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.166 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.068 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=x -y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.313 |
|
| \begin{align*}
\left (x +y+1\right ) y^{\prime }&=x +y+2 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.616 |
|
| \begin{align*}
4 y+3 y^{\prime } x&={\mathrm e}^{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.137 |
|
| \begin{align*}
y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+\left (2+x \right ) y&=1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.312 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.954 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 x -1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
2 y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.374 |
|
| \begin{align*}
\left (x^{2}+1\right ) y y^{\prime }+4&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.569 |
|
| \begin{align*}
x^{2} y+\left (x +1\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.809 |
|
| \begin{align*}
y x +{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.636 |
|
| \begin{align*}
y^{3}+y^{\prime } \sqrt {-x^{2}+1}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.404 |
|
| \begin{align*}
\cos \left (x \right ) \cot \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.068 |
|
| \begin{align*}
\left (x^{2}-1\right ) y+\left (1+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.124 |
|
| \begin{align*}
y x +\ln \left (y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.916 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }+x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.526 |
|
| \begin{align*}
y^{2} \sec \left (x \right )^{2} y^{\prime }+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.159 |
|
| \begin{align*}
x y^{\prime } y+x^{6}-2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.133 |
|
| \begin{align*}
2 x^{3} y+\left (2 y^{2} x^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[‘x=_G(y,y’)‘] |
✗ |
✗ |
✗ |
✗ |
1.648 |
|
| \begin{align*}
y^{\prime }&=3 x^{2} y-3 x^{4}+2 x^{2}-2 y+2 x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.493 |
|
| \begin{align*}
y+x y^{2}-\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
6.275 |
|
| \begin{align*}
x \left (\left (y^{2}+x^{2}\right )^{{3}/{2}}+2 y^{2}\right )+y \left (\left (y^{2}+x^{2}\right )^{{3}/{2}}-2 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✓ |
✓ |
✗ |
11.457 |
|
| \begin{align*}
x \left (6 x^{2}+14 y^{2}\right )+y \left (13 x^{2}+30 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
15.720 |
|
| \begin{align*}
2 y \ln \left (x \right ) \ln \left (y\right )+x \left (\ln \left (x \right )^{2}+\ln \left (y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.702 |
|
| \begin{align*}
y x -\left (y^{4}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.720 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x -y}{x +2 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.942 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +3}{5 x -y} \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✗ |
✗ |
✗ |
✗ |
11.670 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\sin \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.982 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.825 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y x +3 y}{x^{2}+2 y^{2}} \\
\end{align*} |
[_rational] |
✗ |
✗ |
✗ |
✗ |
6.158 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}+y^{3}}{y^{2} x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.386 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2} {\mathrm e}^{\frac {y}{x}}+y^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.362 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}+x^{2} y-y^{3}}{x^{3}-x y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
9.015 |
|
| \begin{align*}
y^{\prime }&=\frac {y+\sqrt {x^{2}-y^{2}}}{x} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 20.098 |
|
| \begin{align*}
y^{\prime }&=1+\frac {3 y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.222 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x^{2}+2 y^{2}-3 y x}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
23.133 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{3}+2 x^{2} y}{x^{3}+2 x y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
10.627 |
|
| \begin{align*}
y^{\prime }&=\frac {4 x -3 y-17}{3 x +y-3} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.420 |
|
| \begin{align*}
x^{2} y-2 x +\left (\frac {x^{3}}{3}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.566 |
|
| \begin{align*}
3 y^{2} x^{2}-4 y+\left (3 y^{2}-4 x +2 x^{3} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.788 |
|
| \begin{align*}
3 y^{2}+y \sin \left (2 y x \right )+\left (6 y x +x \sin \left (2 y x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
3.837 |
|
| \begin{align*}
2 x +2 y-3+\left (1-2 y+2 x \right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.716 |
|
| \begin{align*}
\frac {2 x}{y}+5 y^{2}-4 x +\left (3 y^{2}-\frac {x^{2}}{y^{2}}+10 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
3.123 |
|
| \begin{align*}
\sec \left (x -2 y\right )^{2}+\cos \left (x +3 y\right )-3 \sin \left (3 x \right )+\left (3 \cos \left (x +3 y\right )-2 \sec \left (x -2 y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✗ |
✗ |
14.068 |
|
| \begin{align*}
3 x^{2} {\mathrm e}^{x^{3}}+{\mathrm e}^{2 y}+\left (2 x \,{\mathrm e}^{2 y}-3\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
3.565 |
|
| \begin{align*}
\frac {1-6 x^{2} y}{x}+\frac {\left (2+5 y-3 x^{2} y\right ) y^{\prime }}{y}&=0 \\
\end{align*} |
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
24.409 |
|
| \begin{align*}
\frac {8 x^{4} y+12 x^{3} y^{2}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{1+x^{2} y^{4}}&=0 \\
\end{align*} |
[_rational] |
✗ |
✗ |
✗ |
✗ |
59.580 |
|
| \begin{align*}
\frac {y^{5} x^{2}+y^{2}+y}{1+x^{2} y^{4}}+\frac {\left (y^{4} x^{3}+2 y x +x \right ) y^{\prime }}{1+x^{2} y^{4}}&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
3.101 |
|
| \begin{align*}
3 x -2 y+2 y^{2}+\left (2 y x -x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
2.971 |
|
| \begin{align*}
2 x^{2} y-y^{2}+6 x^{3} y^{3}+\left (2 x^{4} y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
3.450 |
|
| \begin{align*}
x^{4}-3 y+3 y^{\prime }&=0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.007 |
|
| \begin{align*}
20 y-20 x y^{2}+\left (5 x -8 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✓ | 18.464 |
|
| \begin{align*}
y^{3}+2 x y^{3}+1+3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.946 |
|
| \begin{align*}
x^{3}+2 y+\left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.138 |
|
| \begin{align*}
2 y \cos \left (x \right )-1+\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.424 |
|
| \begin{align*}
y+6 x y^{3}-4 y^{4}-\left (2 x +4 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
3.685 |
|
| \begin{align*}
2 x y^{2}+2 x +\left (6 y^{3}+2 y+4 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✗ |
3.389 |
|
| \begin{align*}
3 x^{2} y \ln \left (y\right )+\left (2 x^{3}+2 y^{3}+3 y^{3} \ln \left (y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
4.078 |
|
| \begin{align*}
2 x +2 x y^{2}-y^{3}-y^{5}+\left (1-3 x y^{2}-3 y^{4} x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
3.182 |
|