2.2.238 Problems 23701 to 23800

Table 2.489: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

23701

\begin{align*} y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ y \left (3\right ) &= 2 \\ y^{\prime }\left (3\right ) &= 0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _with_linear_symmetries]]

0.364

23702

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.233

23703

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.229

23704

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.258

23705

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.219

23706

\begin{align*} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.272

23707

\begin{align*} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.266

23708

\begin{align*} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.259

23709

\begin{align*} y^{\prime \prime } x -2 y^{\prime }+y x&=0 \\ y \left (3\right ) &= 1 \\ y^{\prime }\left (3\right ) &= -2 \\ \end{align*}
Series expansion around \(x=3\).

[_Lienard]

0.369

23710

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.228

23711

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.256

23712

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.307

23713

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.233

23714

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.259

23715

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.303

23716

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.208

23717

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.215

23718

\begin{align*} 6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.229

23719

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.627

23720

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

1.393

23721

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.351

23722

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.783

23723

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.634

23724

\begin{align*} x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.508

23725

\begin{align*} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+\frac {y}{16}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.638

23726

\begin{align*} x^{2} y^{\prime \prime }+3 x \left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.664

23727

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.659

23728

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

1.406

23729

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.601

23730

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-p^{2}+x^{2}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

0.673

23731

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.680

23732

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{16}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.635

23733

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.616

23734

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{3}+x^{2}+x \right ) y^{\prime }+\left (4 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.719

23735

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.684

23736

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {2}{3}-3 x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.795

23737

\begin{align*} \left (x -1\right ) y^{\prime \prime }+\left (-x +2\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.681

23738

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.603

23739

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-\left (x +3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

[[_2nd_order, _with_linear_symmetries]]

1.449

23740

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

1.442

23741

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.615

23742

\begin{align*} 2 \left (x +3\right )^{2} y^{\prime \prime }-\left (x^{2}+5 x +6\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=-3\).

[[_2nd_order, _with_linear_symmetries]]

0.755

23743

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.632

23744

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.547

23745

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.675

23746

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.650

23747

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.663

23748

\begin{align*} y^{\prime \prime } x -\left (x -1\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.677

23749

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.806

23750

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{4}-4 x \right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.806

23751

\begin{align*} \left (x -1\right ) \left (2+x \right ) y^{\prime \prime }+\left (x +\frac {1}{2}\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.616

23752

\begin{align*} \left (x^{2}-\frac {1}{4}\right ) y^{\prime \prime }+2 y^{\prime }-6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.367

23753

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.939

23754

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= B \\ \end{align*}

[[_2nd_order, _missing_x]]

2.015

23755

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.584

23756

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.482

23757

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.599

23758

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.356

23759

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

23760

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.157

23761

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\ln \left (x \right ) \\ y \left (1\right ) &= A \\ y \left (2\right ) &= B \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.458

23762

\begin{align*} y^{\prime \prime }&=0 \\ y \left (0\right ) &= \operatorname {c1} \\ y \left (L \right ) &= \operatorname {c2} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.090

23763

\begin{align*} -\frac {u^{\prime \prime }}{2}&=x \\ u \left (0\right ) &= 0 \\ u \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.800

23764

\begin{align*} -\frac {u^{\prime \prime }}{2}&=x \\ u \left (0\right ) &= 0 \\ u \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.778

23765

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=y \\ \end{align*}

system_of_ODEs

0.185

23766

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=2 y \\ \end{align*}

system_of_ODEs

0.248

23767

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.274

23768

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}

system_of_ODEs

0.284

23769

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.286

23770

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.284

23771

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.259

23772

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=-x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.264

23773

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.334

23774

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.320

23775

\begin{align*} x^{\prime }&=y^{2}-x^{2} \\ y^{\prime }&=2 x y \\ \end{align*}

system_of_ODEs

0.023

23776

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-\sin \left (x\right ) \\ \end{align*}

system_of_ODEs

0.031

23777

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-4 \sin \left (x\right ) \\ \end{align*}

system_of_ODEs

0.029

23778

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

system_of_ODEs

0.028

23779

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=-x_{1} \\ \end{align*}

system_of_ODEs

0.303

23780

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=\sin \left (x_{1}\right ) \\ \end{align*}

system_of_ODEs

0.033

23781

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=x_{1} \\ \end{align*}

system_of_ODEs

0.279

23782

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{1}^{3} \\ \end{align*}

system_of_ODEs

0.033

23783

\begin{align*} x^{\prime }&=a x+b y \\ y^{\prime }&=c x+d y \\ \end{align*}

system_of_ODEs

0.958

23784

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}

system_of_ODEs

0.278

23785

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=-x \\ \end{align*}

system_of_ODEs

0.275

23786

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=2 y \\ \end{align*}

system_of_ODEs

0.280

23787

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

system_of_ODEs

0.301

23788

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=x+3 y \\ \end{align*}

system_of_ODEs

0.251

23789

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=5 x-y \\ \end{align*}

system_of_ODEs

0.359

23790

\begin{align*} x^{\prime }&=-3 x+4 y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}

system_of_ODEs

0.295

23791

\begin{align*} x^{\prime }&=5 x-6 y \\ y^{\prime }&=6 x-7 y \\ \end{align*}

system_of_ODEs

0.257

23792

\begin{align*} x^{\prime }&=-3 x+5 y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.663

23793

\begin{align*} x^{\prime }&=3 x-2 y \\ y^{\prime }&=4 x-y \\ \end{align*}

system_of_ODEs

0.680

23794

\begin{align*} x^{\prime }&=4 x-6 y \\ y^{\prime }&=8 x-10 y \\ \end{align*}

system_of_ODEs

0.302

23795

\begin{align*} x^{\prime }&=5 x-6 y+1 \\ y^{\prime }&=6 x-7 y+1 \\ \end{align*}

system_of_ODEs

0.637

23796

\begin{align*} x^{\prime }&=5 x-6 y+x y \\ y^{\prime }&=6 x-7 y-x y \\ \end{align*}

system_of_ODEs

0.033

23797

\begin{align*} x^{\prime }&=3 x-2 y+\left (x^{2}+y^{2}\right )^{2} \\ y^{\prime }&=4 x-y+\left (x^{2}-y^{2}\right )^{5} \\ \end{align*}

system_of_ODEs

0.033

23798

\begin{align*} x^{\prime }&=y+x^{2}-x y \\ y^{\prime }&=-2 x+3 y+y^{2} \\ \end{align*}

system_of_ODEs

0.024

23799

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

system_of_ODEs

0.027

23800

\begin{align*} x^{\prime }&=-x-x^{2}+y^{2} \\ y^{\prime }&=-y+2 x y \\ \end{align*}

system_of_ODEs

0.030