| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+2 y&=0 \\
y \left (3\right ) &= 2 \\
y^{\prime }\left (3\right ) &= 0 \\
\end{align*} Series expansion around \(x=3\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.229 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
y^{\prime \prime } x -2 y^{\prime }+y x&=0 \\
y \left (3\right ) &= 1 \\
y^{\prime }\left (3\right ) &= -2 \\
\end{align*} Series expansion around \(x=3\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.228 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.215 |
|
| \begin{align*}
6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.229 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.627 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✓ |
1.393 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.783 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
0.634 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.508 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+\frac {y}{16}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.638 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 x \left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✓ |
1.406 |
|
| \begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (-p^{2}+x^{2}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✗ |
0.673 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
0.680 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{16}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.635 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-\left (x^{3}+x^{2}+x \right ) y^{\prime }+\left (4 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.719 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {2}{3}-3 x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). | [[_2nd_order, _exact, _linear, _homogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.795 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }+\left (-x +2\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.681 |
|
| \begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.603 |
|
| \begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }-\left (x +3\right ) y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.449 |
|
| \begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.442 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| \begin{align*}
2 \left (x +3\right )^{2} y^{\prime \prime }-\left (x^{2}+5 x +6\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=-3\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.755 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.632 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.547 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.675 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| \begin{align*}
y^{\prime \prime } x -\left (x -1\right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
0.677 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{4}-4 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| \begin{align*}
\left (x -1\right ) \left (2+x \right ) y^{\prime \prime }+\left (x +\frac {1}{2}\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
\left (x^{2}-\frac {1}{4}\right ) y^{\prime \prime }+2 y^{\prime }-6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\pi \right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\pi \right ) &= B \\
\end{align*} | [[_2nd_order, _missing_x]] | ✗ | ✗ | ✗ | ✗ | 2.015 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\pi \right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.482 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\pi \right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
1.599 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\ln \left (x \right ) \\
y \left (1\right ) &= A \\
y \left (2\right ) &= B \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.458 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
y \left (0\right ) &= \operatorname {c1} \\
y \left (L \right ) &= \operatorname {c2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.090 |
|
| \begin{align*}
-\frac {u^{\prime \prime }}{2}&=x \\
u \left (0\right ) &= 0 \\
u \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✗ |
0.800 |
|
| \begin{align*}
-\frac {u^{\prime \prime }}{2}&=x \\
u \left (0\right ) &= 0 \\
u \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✗ |
0.778 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.248 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| \begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.320 |
|
| \begin{align*}
x^{\prime }&=y^{2}-x^{2} \\
y^{\prime }&=2 x y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.023 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-\sin \left (x\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.031 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-4 \sin \left (x\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| \begin{align*}
x^{\prime }&=x-x y \\
y^{\prime }&=-y+x y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.028 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=-x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=\sin \left (x_{1}\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.033 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{1}^{3} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.033 |
|
| \begin{align*}
x^{\prime }&=a x+b y \\
y^{\prime }&=c x+d y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.958 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| \begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=-x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| \begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
x^{\prime }&=x-y \\
y^{\prime }&=x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
x^{\prime }&=x-y \\
y^{\prime }&=5 x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
x^{\prime }&=-3 x+4 y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
x^{\prime }&=5 x-6 y \\
y^{\prime }&=6 x-7 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
x^{\prime }&=-3 x+5 y \\
y^{\prime }&=-x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| \begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=4 x-y \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.680 |
|
| \begin{align*}
x^{\prime }&=4 x-6 y \\
y^{\prime }&=8 x-10 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
x^{\prime }&=5 x-6 y+1 \\
y^{\prime }&=6 x-7 y+1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.637 |
|
| \begin{align*}
x^{\prime }&=5 x-6 y+x y \\
y^{\prime }&=6 x-7 y-x y \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.033 |
|
| \begin{align*}
x^{\prime }&=3 x-2 y+\left (x^{2}+y^{2}\right )^{2} \\
y^{\prime }&=4 x-y+\left (x^{2}-y^{2}\right )^{5} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.033 |
|
| \begin{align*}
x^{\prime }&=y+x^{2}-x y \\
y^{\prime }&=-2 x+3 y+y^{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.024 |
|
| \begin{align*}
x^{\prime }&=x-x y \\
y^{\prime }&=-y+x y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| \begin{align*}
x^{\prime }&=-x-x^{2}+y^{2} \\
y^{\prime }&=-y+2 x y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✗ |
✗ |
0.030 |
|