2.2.236 Problems 23501 to 23600

Table 2.485: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

23501

\begin{align*} y^{\prime \prime }&=3 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.602

23502

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.963

23503

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -8 y&={\mathrm e}^{x} \left (x^{2}+2\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.946

23504

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.297

23505

\begin{align*} y^{\prime \prime }-7 y^{\prime }-8 y&={\mathrm e}^{x} \left (x^{2}+2\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.282

23506

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )+{\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.287

23507

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&={\mathrm e}^{2 x} \left (x +3\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.274

23508

\begin{align*} y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.656

23509

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.402

23510

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.475

23511

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.111

23512

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.262

23513

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.266

23514

\begin{align*} y^{\prime \prime }+y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.341

23515

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

23516

\begin{align*} y^{\prime \prime }-3 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

23517

\begin{align*} 4 y^{\prime \prime }+7 y^{\prime }+3 y&=5 \cos \left (t \right ) \\ y \left (0\right ) &= -3 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

23518

\begin{align*} e i u^{\prime \prime \prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_high_order, _quadrature]]

0.085

23519

\begin{align*} e i u^{\prime \prime \prime \prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_high_order, _quadrature]]

0.084

23520

\begin{align*} e i u^{\prime \prime \prime \prime }&=\sinh \left (x \right ) \\ \end{align*}

[[_high_order, _quadrature]]

0.244

23521

\begin{align*} e i u^{\prime \prime \prime \prime }&=1 \\ \end{align*}

[[_high_order, _quadrature]]

0.085

23522

\begin{align*} e i u^{\prime \prime \prime \prime }&=x^{2} \\ \end{align*}

[[_high_order, _quadrature]]

0.100

23523

\begin{align*} e i u^{\prime \prime \prime \prime }&=x^{4} \\ \end{align*}

[[_high_order, _quadrature]]

0.114

23524

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.429

23525

\begin{align*} y^{\prime \prime }+y&=\sin \left (a x \right ) \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

23526

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

23527

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.358

23528

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.393

23529

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=\frac {{\mathrm e}^{-5 x} \ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.573

23530

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.527

23531

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.467

23532

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&={\mathrm e}^{6 x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

23533

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.437

23534

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

23535

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{4}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

23536

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x} \ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.548

23537

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.453

23538

\begin{align*} 5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.651

23539

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{{1}/{4}} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.284

23540

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.292

23541

\begin{align*} 2 x^{2} y^{\prime \prime }+7 y^{\prime } x -3 y&=\frac {\ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.173

23542

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=\ln \left (x \right ) \left (\frac {1}{x^{3}}+\frac {1}{x^{5}}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.550

23543

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.708

23544

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.672

23545

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ y \left (1\right ) &= {\mathrm e} \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.675

23546

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\ y \left (1\right ) &= 4 \,{\mathrm e}^{-3} \\ y^{\prime }\left (1\right ) &= -2 \,{\mathrm e}^{-3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.743

23547

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.595

23548

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{4}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= {\mathrm e}^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.705

23549

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= {\frac {5}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.755

23550

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\ y \left (\frac {1}{4}\right ) &= 0 \\ y^{\prime }\left (\frac {1}{4}\right ) &= {\frac {14}{9}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.664

23551

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=\left (x^{2}+1\right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.284

23552

\begin{align*} y^{\left (5\right )}-y^{\prime }-\frac {4 y}{x}&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.028

23553

\begin{align*} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 \ln \left (x \right ) x^{2}\right ) y^{\prime }-\left (2+4 x \right ) y&={\mathrm e}^{2 x} \left (1-2 x \ln \left (x \right )\right )^{2} \\ y \left (\frac {1}{2}\right ) &= \frac {{\mathrm e}}{2} \\ y^{\prime }\left (\frac {1}{2}\right ) &= {\mathrm e} \left (2+\ln \left (2\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.689

23554

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=-\frac {{\mathrm e}^{-t}}{\left (t +1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

23555

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+6 x_{2} \\ \end{align*}

system_of_ODEs

0.474

23556

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=-2 x_{1}+3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -1 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.490

23557

\begin{align*} x_{1}^{\prime }&=2 \sin \left (t \right ) x_{1}+\ln \left (t \right ) x_{2} \\ x_{2}^{\prime }&=\frac {x_{1}}{t -2}+\frac {{\mathrm e}^{t} x_{2}}{t +1} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (3\right ) &= 0 \\ x_{2} \left (3\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.040

23558

\begin{align*} x^{\prime }&=5 x-6 y+1 \\ y^{\prime }&=6 x-7 y+1 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.584

23559

\begin{align*} x^{\prime }&=5 x-6 y \\ y^{\prime }&=6 x-7 y \\ \end{align*}

system_of_ODEs

0.246

23560

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=x-2 y \\ \end{align*}

system_of_ODEs

0.297

23561

\begin{align*} x^{\prime }&=3 x-2 y \\ y^{\prime }&=2 x-2 y \\ \end{align*}

system_of_ODEs

0.322

23562

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=x-y \\ \end{align*}

system_of_ODEs

0.523

23563

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.433

23564

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

system_of_ODEs

0.318

23565

\begin{align*} x^{\prime }&=y-z \\ y^{\prime }&=z-x \\ z^{\prime }&=x-y \\ \end{align*}

system_of_ODEs

0.988

23566

\begin{align*} x_{1}^{\prime }&=x_{1}+\left (1-t \right ) x_{2} \\ x_{2}^{\prime }&=\frac {x_{1}}{t}-x_{2} \\ \end{align*}

system_of_ODEs

0.032

23567

\begin{align*} x_{1}^{\prime }&=x_{2}-x_{3}+x_{4} \\ x_{2}^{\prime }&=-x_{2}+x_{4} \\ x_{3}^{\prime }&=x_{3}-x_{4} \\ x_{4}^{\prime }&=2 x_{4} \\ \end{align*}

system_of_ODEs

1.237

23568

\begin{align*} x_{1}^{\prime }&=5 x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{2}-4 x_{3} \\ x_{3}^{\prime }&=2 x_{1}-4 x_{2}+2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.639

23569

\begin{align*} x_{1}^{\prime }&=-10 x_{1}+x_{2}+7 x_{3} \\ x_{2}^{\prime }&=-9 x_{1}+4 x_{2}+5 x_{3} \\ x_{3}^{\prime }&=-17 x_{1}+x_{2}+12 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 5 \\ x_{2} \left (0\right ) &= 2 \\ x_{3} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.926

23570

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.452

23571

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=x_{1} \\ \end{align*}

system_of_ODEs

0.426

23572

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2}+3 \,{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}+2 t \\ \end{align*}

system_of_ODEs

0.716

23573

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2}+1 \\ x_{2}^{\prime }&=x_{1}+t \\ \end{align*}

system_of_ODEs

0.654

23574

\begin{align*} x^{\prime }&=5 x-6 y+1 \\ y^{\prime }&=6 x-7 y+1 \\ \end{align*}

system_of_ODEs

0.538

23575

\begin{align*} t x^{\prime }&=3 x-2 y \\ t y^{\prime }&=x+y-t^{2} \\ \end{align*}

system_of_ODEs

0.026

23576

\begin{align*} x^{\prime }&=3 x-2 y+2 t^{2} \\ y^{\prime }&=5 x+y-1 \\ \end{align*}

system_of_ODEs

1.332

23577

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.533

23578

\begin{align*} N_{1}^{\prime }&=4 N_{1}-6 N_{2} \\ N_{2}^{\prime }&=8 N_{1}-10 N_{2} \\ \end{align*}
With initial conditions
\begin{align*} N_{1} \left (0\right ) &= 100000 \\ N_{2} \left (0\right ) &= 1000 \\ \end{align*}

system_of_ODEs

0.495

23579

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.539

23580

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=x_{1} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.460

23581

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2}+3 \,{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}+2 t \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -{\frac {5}{18}} \\ x_{2} \left (0\right ) &= {\frac {47}{9}} \\ \end{align*}

system_of_ODEs

0.813

23582

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2}+1 \\ x_{2}^{\prime }&=x_{1}+t \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -{\frac {1}{2}} \\ x_{2} \left (0\right ) &= -{\frac {1}{4}} \\ \end{align*}

system_of_ODEs

0.625

23583

\begin{align*} x^{\prime }&=5 x-6 y+1 \\ y^{\prime }&=6 x-7 y+1 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.559

23584

\begin{align*} t x^{\prime }&=3 x-2 y \\ t y^{\prime }&=x+y-t^{2} \\ \end{align*}
With initial conditions
\begin{align*} x \left (1\right ) &= 1 \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

system_of_ODEs

0.028

23585

\begin{align*} x^{\prime }&=3 x-2 y+2 t^{2} \\ y^{\prime }&=5 x+y-1 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= {\frac {534}{2197}} \\ y \left (0\right ) &= {\frac {567}{2197}} \\ \end{align*}

system_of_ODEs

1.039

23586

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=4 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.476

23587

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=-y \\ \end{align*}

system_of_ODEs

0.182

23588

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=x-2 y \\ \end{align*}

system_of_ODEs

0.408

23589

\begin{align*} x^{\prime }&=3 x-2 y \\ y^{\prime }&=2 x-2 y \\ \end{align*}

system_of_ODEs

0.430

23590

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=-x-y \\ \end{align*}

system_of_ODEs

0.223

23591

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

system_of_ODEs

0.428

23592

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}

system_of_ODEs

0.414

23593

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x+2 y \\ \end{align*}

system_of_ODEs

0.253

23594

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=9 x+2 y \\ \end{align*}

system_of_ODEs

0.478

23595

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-3 x+6 y \\ \end{align*}

system_of_ODEs

0.447

23596

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=z \\ z^{\prime }&=x \\ \end{align*}

system_of_ODEs

1.525

23597

\begin{align*} c_{1}^{\prime }&=-\frac {k c_{1}}{V_{1}}+\frac {k c_{2}}{V_{1}} \\ c_{2}^{\prime }&=\frac {k c_{1}}{V_{2}}-\frac {k c_{2}}{V_{2}} \\ \end{align*}

system_of_ODEs

0.520

23598

\begin{align*} x^{\prime }&=a \left (b -x\right )-c f y \\ y^{\prime }&=d \left (x-y\right )-c f y-a y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= b \\ y \left (0\right ) &= \frac {d b}{a +d} \\ \end{align*}

system_of_ODEs

1.109

23599

\begin{align*} x^{\prime }&=4 x+2 y \\ y^{\prime }&=-3 x-y \\ \end{align*}

system_of_ODEs

0.450

23600

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.429