2.2.235 Problems 23401 to 23500

Table 2.483: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

23401

\begin{align*} \left (2+x \right ) y^{\prime \prime }-y^{\prime }+\frac {y}{2+x}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.531

23402

\begin{align*} y^{\prime \prime }+\frac {5 y^{\prime }}{x -1}+\frac {4 y}{\left (x -1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.561

23403

\begin{align*} 5 y^{\prime \prime }+\frac {3 y^{\prime }}{x -3}+\frac {3 y}{\left (x -3\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.776

23404

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.085

23405

\begin{align*} x^{2} y^{\prime \prime }+\left (2 x^{2}-x \right ) y^{\prime }-2 y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.101

23406

\begin{align*} x^{3} y^{\prime \prime }+\left (5 x^{3}-x^{2}\right ) y^{\prime }+2 \left (3 x^{3}-x^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.105

23407

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }-y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.094

23408

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.094

23409

\begin{align*} y^{\prime \prime } x +\left (x -1\right ) y^{\prime }+\left (3-12 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.104

23410

\begin{align*} x^{2} \left (1-\ln \left (x \right )\right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.094

23411

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {9 y}{x^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.108

23412

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.202

23413

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\ \end{align*}

[_Gegenbauer]

0.110

23414

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.116

23415

\begin{align*} x \left (x -2\right ) y^{\prime \prime }-2 \left (x^{2}-3 x +3\right ) y^{\prime }+\left (x^{2}-4 x +6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.117

23416

\begin{align*} x \left (1-3 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+9 \ln \left (x \right ) x^{2}\right ) y^{\prime }-\left (3+9 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.197

23417

\begin{align*} y^{\prime \prime }-\left (1+\frac {3}{2 x}\right ) y^{\prime }+\frac {3 y}{2 x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.125

23418

\begin{align*} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 \ln \left (x \right ) x^{2}\right ) y^{\prime }-\left (2+4 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.193

23419

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.111

23420

\begin{align*} 6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.197

23421

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.095

23422

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\ \end{align*}

[_Gegenbauer]

0.118

23423

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}

[_Laguerre]

0.107

23424

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[_Laguerre]

0.115

23425

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+3 y&=0 \\ \end{align*}

[_Laguerre]

0.123

23426

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.099

23427

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.109

23428

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.108

23429

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.103

23430

\begin{align*} y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.103

23431

\begin{align*} y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ y \left (1\right ) &= 2 \,{\mathrm e} \\ y^{\prime }\left (1\right ) &= -3 \,{\mathrm e} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.241

23432

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.055

23433

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.307

23434

\begin{align*} y^{\prime \prime \prime }-y \sin \left (x \right )&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.035

23435

\begin{align*} y^{\prime \prime }+y^{\prime }+{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.437

23436

\begin{align*} y^{\prime \prime \prime \prime }-\ln \left (x +1\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_high_order, _with_linear_symmetries]]

0.042

23437

\begin{align*} y^{\prime \prime }+\left (x +3\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.320

23438

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.270

23439

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.317

23440

\begin{align*} y^{\prime \prime \prime }-3 x^{2} y^{\prime }+2 y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.038

23441

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }+2 y^{\prime }-x^{3} y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.040

23442

\begin{align*} y^{\prime \prime }+y \cos \left (x \right )&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.405

23443

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.249

23444

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.243

23445

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.330

23446

\begin{align*} y^{\prime \prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _missing_x]]

0.021

23447

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.369

23448

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.247

23449

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.492

23450

\begin{align*} y^{\prime }+3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.250

23451

\begin{align*} y^{\prime \prime \prime }-2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.023

23452

\begin{align*} \left (x +1\right ) y^{\prime \prime }+3 y^{\prime }-2 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.482

23453

\begin{align*} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.739

23454

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2}+3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

23455

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x}+{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

23456

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.363

23457

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.364

23458

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (3 x \right )-\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.522

23459

\begin{align*} y^{\prime \prime \prime }+y^{\prime }-2 y&=x^{3} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.124

23460

\begin{align*} y^{\prime \prime }-13 y^{\prime }+36 y&={\mathrm e}^{4 x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

23461

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.531

23462

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=x^{2} {\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

23463

\begin{align*} y^{\prime \prime \prime }-y&=3 \ln \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.702

23464

\begin{align*} y^{\prime \prime \prime \prime }-y&=x^{2} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.112

23465

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -10 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.084

23466

\begin{align*} 3 x^{2} y^{\prime \prime }-2 y^{\prime } x -8 y&=3 x +5 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.316

23467

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.865

23468

\begin{align*} y^{\prime \prime } x -2 y^{\prime }+\frac {\left (x^{2}+2\right ) y}{x}&=4+\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.358

23469

\begin{align*} 3 x y^{\prime \prime \prime }-4 y x&=\cos \left (y\right ) \\ \end{align*}

[NONE]

0.035

23470

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.165

23471

\begin{align*} y^{\prime \prime }+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.295

23472

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime } x +4 y&=x^{2} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.037

23473

\begin{align*} y^{\prime \prime }-3 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.424

23474

\begin{align*} 3 x y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }&=3 \cos \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

1.006

23475

\begin{align*} y^{\prime \prime }+2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

23476

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

23477

\begin{align*} y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.364

23478

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.594

23479

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.409

23480

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.101

23481

\begin{align*} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }&=1 \\ \end{align*}

[[_high_order, _missing_x]]

0.134

23482

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

23483

\begin{align*} y^{\prime \prime }+y&=x +{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.349

23484

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.479

23485

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

23486

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.099

23487

\begin{align*} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }&=1 \\ \end{align*}

[[_high_order, _missing_x]]

0.136

23488

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.390

23489

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.126

23490

\begin{align*} 4 y+y^{\prime \prime }&=4 x^{3}-8 x^{2}-14 x +7 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

23491

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.109

23492

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.361

23493

\begin{align*} y^{\prime \prime }-y&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.467

23494

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.383

23495

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.385

23496

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

23497

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

23498

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

23499

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 x \,{\mathrm e}^{-x}+x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.412

23500

\begin{align*} y^{\prime \prime }-y&=4 \cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519