| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.083 |
|
| \begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.080 |
|
| \begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }-3 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.084 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=0 \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
y^{\prime \prime }\left (\pi \right ) &= 1 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime }-3 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.103 |
|
| \begin{align*}
y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+18 y^{\prime \prime }-20 y^{\prime }+8 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.095 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime }+16 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.097 |
|
| \begin{align*}
y^{\prime }-y&=x \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.972 |
|
| \begin{align*}
y^{\prime }-y&=3 x^{2}+x \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.480 |
|
| \begin{align*}
y^{\prime }-5 y&=3 \,{\mathrm e}^{x}-2 x +1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.129 |
|
| \begin{align*}
y^{\prime }-5 y&={\mathrm e}^{x} x^{3}-x \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.543 |
|
| \begin{align*}
y^{\prime }-5 y&=\sin \left (x \right ) \left (x -1\right )+\left (x +1\right ) \cos \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.740 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.577 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.541 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2}+2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=x^{3}+3 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.672 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=2 x^{3}+5 x^{2}-7 x +2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right )+\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.160 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=2 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=3 \sin \left (x +\frac {\pi }{4}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.724 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 x^{2}+{\mathrm e}^{x}+2 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.673 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (x^{2}-1\right ) {\mathrm e}^{2 x}+\left (3 x +4\right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.155 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+8 y&=\left (10 x^{2}+21 x +9\right ) \sin \left (3 x \right )+x \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.953 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 x -40 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=2 \,{\mathrm e}^{x}-10 \sin \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.873 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y&=4 \sin \left (2 x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=2 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
y^{\prime \prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✗ |
✓ |
0.320 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime }&=3 x^{2}+4 \sin \left (x \right )-2 \cos \left (x \right ) \\
\end{align*} | [[_high_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.334 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.556 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2}+2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{1+{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.449 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.837 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.729 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sec \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.829 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.630 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y&=f \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✗ |
✗ |
2.839 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{x} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=\sec \left (x \right ) \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=5 x \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }-\frac {4 y}{x}&=x^{3}+x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
3.368 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=6 \left (x^{2}+1\right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.560 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.547 |
|
| \begin{align*}
\left (x^{2}-3 x +1\right ) y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }+\left (2 x -3\right ) y&=x \left (x^{2}-3 x +1\right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.298 |
|
| \begin{align*}
y^{\prime \prime } x -\frac {\left (1-2 x \right ) y^{\prime }}{1-x}+\frac {\left (x^{2}-3 x +1\right ) y}{1-x}&=\left (1-x \right )^{2} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 1.744 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 y^{\prime } x -8 y&=4 \ln \left (x \right ) \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.268 |
|
| \begin{align*}
y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
23.627 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.705 |
|
| \begin{align*}
y-\frac {y^{\prime } x}{2}-\frac {x}{2 y^{\prime }}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.676 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}&=2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
23.924 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.504 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.260 |
|
| \begin{align*}
y^{\prime \prime }-2 s y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.077 |
|
| \begin{align*}
2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }-y&=2 x +{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+54 y^{\prime \prime }+108 y^{\prime }+81 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.088 |
|
| \begin{align*}
y^{\left (6\right )}+8 y^{\prime \prime \prime }&=a \,{\mathrm e}^{x} \\
\end{align*} | [[_high_order, _missing_y]] | ✓ | ✓ | ✓ | ✗ | 0.211 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=16 x^{3} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=a \sin \left (b x \right ) \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x}+7 x -2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+16 y^{\prime \prime }&=96 \,{\mathrm e}^{-4 x} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y&=f \left (x \right ) \\
y \left (x_{0} \right ) &= y_{0} \\
y^{\prime }\left (x_{0} \right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
5.630 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.560 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime }+y&=\sin \left (3 x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
y^{\prime \prime \prime }-5 y^{\prime \prime }+3 y^{\prime }+9 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.176 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime \prime }-y&=x^{2}-x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
4 y+4 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime }&=\cos \left (2 x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \left (x +1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.540 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=\cos \left (2 x \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| \begin{align*}
y^{\left (5\right )}+y^{\prime \prime }&=x^{5}-3 x^{2} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-12 y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
2 x^{\prime }-3 x-2 y^{\prime }&=t \\
2 x^{\prime }+3 x+2 y^{\prime }+8 y&=2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.195 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y+1}{x +2 y+3} \\
\end{align*} | [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 108.659 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y+1}{x +y+2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
16.361 |
|
| \begin{align*}
x +2 y+3+\left (2 x +4 y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.163 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +y}{y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
34.476 |
|
| \begin{align*}
2 x +y-3+\left (x +y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
15.631 |
|
| \begin{align*}
x -2 y+1+\left (4 x -3 y-6\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
85.507 |
|
| \begin{align*}
x^{2} u^{\prime \prime }-3 x u^{\prime }+13 u&=0 \\
u \left (1\right ) &= -1 \\
u^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
3.480 |
|
| \begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }-14 y&=x^{3}-3 x^{2}+3 x -8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.562 |
|