| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }+2 y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.196 |
|
| \begin{align*}
1+3 x \sin \left (y\right )-x^{2} y^{\prime } \cos \left (y\right )&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
21.328 |
|
| \begin{align*}
\left (2+3 x -y x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.061 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y&=x \,{\mathrm e}^{-x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
9.528 |
|
| \begin{align*}
x^{\prime }-x \tan \left (t \right )&=\sin \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.931 |
|
| \begin{align*}
y^{\prime }&=2 y x -x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.771 |
|
| \begin{align*}
y^{\prime }+\left (b x +a \right ) y&=f \left (x \right ) \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
6.074 |
|
| \begin{align*}
2 y+y^{\prime }&=1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.571 |
|
| \begin{align*}
2 y-8 x^{2}+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
8.724 |
|
| \begin{align*}
y^{\prime }-3 y&=6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.896 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| \begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.585 |
|
| \begin{align*}
y^{\prime }+\frac {y \left (x +y\right )}{x +2 y-1}&=0 \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.724 |
|
| \begin{align*}
y^{\prime }+\frac {y}{y^{2} x^{2}+x}&=\frac {x y^{2}}{y^{2} x^{2}+x} \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
11.349 |
|
| \begin{align*}
y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.100 |
|
| \begin{align*}
\ln \left (y\right )+\frac {y^{\prime }}{y}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.230 |
|
| \begin{align*}
{\mathrm e}^{x}-\sin \left (y\right )+y^{\prime } \cos \left (y\right )&=0 \\
\end{align*} | [‘y=_G(x,y’)‘] | ✓ | ✓ | ✓ | ✓ | 8.963 |
|
| \begin{align*}
2 x^{2}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
8.015 |
|
| \begin{align*}
4 y x +3 y^{2}-x +x \left (x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
12.971 |
|
| \begin{align*}
y \left (x +y+1\right )+x \left (x +3 y+2\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
12.914 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y x^{2}}{x^{3}+2 y^{4}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
20.110 |
|
| \begin{align*}
y^{\prime }&=\frac {-y x +\ln \left (x^{2}\right )}{x^{2}+x \,{\mathrm e}^{y}} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
26.784 |
|
| \begin{align*}
3 x^{2} y+\left (y^{4}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
17.566 |
|
| \begin{align*}
y+\left (x +x^{3} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
14.124 |
|
| \begin{align*}
\left (x^{3}-y\right ) y-x \left (x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
79.002 |
|
| \begin{align*}
\frac {y^{2}-y x}{x y^{2}}+\frac {x y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.250 |
|
| \begin{align*}
\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.036 |
|
| \begin{align*}
y^{\prime }&=\frac {x -2 y}{2 x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
19.972 |
|
| \begin{align*}
y^{\prime } \left (x +\frac {x^{2}}{y}\right )&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
40.481 |
|
| \begin{align*}
2 x -y+\left (-x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
13.447 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.543 |
|
| \begin{align*}
y^{\prime }+q \left (x \right ) y&=0 \\
y \left (\textit {x\_0} \right ) &= y_{0} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.226 |
|
| \begin{align*}
2 y-1+\left (3 x -y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 67.268 |
|
| \begin{align*}
2 y+y^{\prime }&=1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.481 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x}+y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.406 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
10.046 |
|
| \begin{align*}
y^{\prime }+y&=x \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.042 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=3 x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
7.332 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+4 y x&=x \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
12.412 |
|
| \begin{align*}
y^{\prime }+\frac {\left (2 x +1\right ) y}{x}&={\mathrm e}^{-2 x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
18.382 |
|
| \begin{align*}
y^{\prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.466 |
|
| \begin{align*}
y^{\prime }-2 y x&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.759 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.083 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime }+y \sin \left (x \right )&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.846 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{4}+2 y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
9.992 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y x}{y^{2}-x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.185 |
|
| \begin{align*}
y^{\prime }-5 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.448 |
|
| \begin{align*}
y^{\prime }+y&=\sin \left (x \right ) \\
y \left (\pi \right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.646 |
|
| \begin{align*}
y^{2}+\left (3 y x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
35.495 |
|
| \begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.580 |
|
| \begin{align*}
\frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+y x +y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✗ |
✓ |
✗ |
✗ |
49.493 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2} x^{2}+2 y}{x} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 22.705 |
|
| \begin{align*}
6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
73.200 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2} y^{3}+y x} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
12.730 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}&=x^{4} y^{{1}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
82.292 |
|
| \begin{align*}
y^{\prime }+y&=x y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.292 |
|
| \begin{align*}
y \left (6 y^{2}-x -1\right )+2 y^{\prime } x&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.800 |
|
| \begin{align*}
y^{\prime }+y x&=x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.828 |
|
| \begin{align*}
x u^{\prime \prime }-\left ({\mathrm e}^{x} x^{2}+1\right ) u^{\prime }-x^{2} {\mathrm e}^{x} u&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✗ |
✗ |
1.620 |
|
| \begin{align*}
u^{\prime \prime }-\left (x +1\right ) u^{\prime }+\left (x -1\right ) u&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.933 |
|
| \begin{align*}
y^{\prime }&=-\frac {2+x}{x \left (x +1\right )^{2}}-\frac {\left (-x^{2}+x +2\right ) y}{x \left (x +1\right )}+\left (x +1\right ) y^{2} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
177.970 |
|
| \begin{align*}
y^{\prime }&=-\frac {2+x}{x \left (x +1\right )^{2}}-\frac {\left (-x^{2}+x +2\right ) y}{x \left (x +1\right )}+\left (x +1\right ) y^{2} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
130.049 |
|
| \begin{align*}
y^{\prime }&=1-y+y^{2} {\mathrm e}^{2 x} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
8.840 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 x}+\left (2+\frac {5 \,{\mathrm e}^{x}}{2}\right ) y+y^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
118.375 |
|
| \begin{align*}
y^{\prime }&=-x^{2}-x -1-\left (2 x +1\right ) y-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
12.020 |
|
| \begin{align*}
y^{\prime }&=1+x +x^{2} \cos \left (x \right )-\left (1+4 \cos \left (x \right ) x \right ) y+2 y^{2} \cos \left (x \right ) \\
\end{align*} |
[_Riccati] |
✗ |
✗ |
✗ |
✗ |
43.947 |
|
| \begin{align*}
y^{\prime }&=-2+3 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.289 |
|
| \begin{align*}
\left (-y+y^{\prime } x \right )^{2}-{y^{\prime }}^{2}-1&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.412 |
|
| \begin{align*}
{y^{\prime }}^{2} \left (x^{2}-1\right )-2 x y^{\prime } y+y^{2}-1&=0 \\
\end{align*} | [[_1st_order, _with_linear_symmetries], _rational, _Clairaut] | ✓ | ✓ | ✓ | ✗ | 0.346 |
|
| \begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{3} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.470 |
|
| \begin{align*}
\left (x^{2}-2 x \right ) \left (1+{y^{\prime }}^{2}\right )+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.064 |
|
| \begin{align*}
2 y^{\prime }+y-2 y^{\prime } \ln \left (y^{\prime }\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
17.271 |
|
| \begin{align*}
\frac {\ln \left (1+{y^{\prime }}^{2}\right )}{2}-\ln \left (y^{\prime }\right )-x +2&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
13.818 |
|
| \begin{align*}
u^{\prime \prime }+\left (\tan \left (x \right )-2 \cos \left (x \right )\right ) u^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.081 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.929 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=f \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.590 |
|
| \begin{align*}
x^{\prime \prime }-4 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.438 |
|
| \begin{align*}
y^{\prime \prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.631 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.343 |
|
| \begin{align*}
x^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.289 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.629 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.789 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.562 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.560 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.676 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.420 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.575 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= -3 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.726 |
|
| \begin{align*}
y^{\prime \prime }-\frac {6 y^{\prime }}{5}+\frac {9 y}{25}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.555 |
|
| \begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.083 |
|