2.2.15 Problems 1401 to 1500

Table 2.43: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

1401

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.546

1402

\begin{align*} x_{1}^{\prime }&=-x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.438

1403

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.418

1404

\begin{align*} x_{1}^{\prime }&=2 x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }&=\frac {9 x_{1}}{5}-x_{2} \\ \end{align*}

system_of_ODEs

0.568

1405

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\ \end{align*}

system_of_ODEs

0.544

1406

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-5 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.455

1407

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }&=3 x_{1}+2 x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.773

1408

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{3} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ x_{3}^{\prime }&=-2 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

1.994

1409

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.516

1410

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-x_{1}-x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.559

1411

\begin{align*} x_{1}^{\prime }&=\frac {3 x_{1}}{4}-2 x_{2} \\ x_{2}^{\prime }&=x_{1}-\frac {5 x_{2}}{4} \\ \end{align*}

system_of_ODEs

0.526

1412

\begin{align*} x_{1}^{\prime }&=-\frac {4 x_{1}}{5}+2 x_{2} \\ x_{2}^{\prime }&=-x_{1}+\frac {6 x_{2}}{5} \\ \end{align*}

system_of_ODEs

0.526

1413

\begin{align*} x_{1}^{\prime }&=-\frac {x_{1}}{4}+x_{2} \\ x_{2}^{\prime }&=-x_{1}-\frac {x_{2}}{4} \\ x_{3}^{\prime }&=-\frac {x_{3}}{4} \\ \end{align*}

system_of_ODEs

0.620

1414

\begin{align*} x_{1}^{\prime }&=-\frac {x_{1}}{4}+x_{2} \\ x_{2}^{\prime }&=-x_{1}-\frac {x_{2}}{4} \\ x_{3}^{\prime }&=\frac {x_{3}}{10} \\ \end{align*}

system_of_ODEs

0.677

1415

\begin{align*} x_{1}^{\prime }&=-\frac {x_{1}}{2}-\frac {x_{2}}{8} \\ x_{2}^{\prime }&=2 x_{1}-\frac {x_{2}}{2} \\ \end{align*}

system_of_ODEs

0.455

1416

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.340

1417

\begin{align*} x_{1}^{\prime }&=4 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=8 x_{1}-4 x_{2} \\ \end{align*}

system_of_ODEs

0.328

1418

\begin{align*} x_{1}^{\prime }&=-\frac {3 x_{1}}{2}+x_{2} \\ x_{2}^{\prime }&=-\frac {x_{1}}{4}-\frac {x_{2}}{2} \\ \end{align*}

system_of_ODEs

0.355

1419

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+\frac {5 x_{2}}{2} \\ x_{2}^{\prime }&=-\frac {5 x_{1}}{2}+2 x_{2} \\ \end{align*}

system_of_ODEs

0.355

1420

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.763

1421

\begin{align*} x_{1}^{\prime }&=x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.536

1422

\begin{align*} x_{1}^{\prime }&=x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 3 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.390

1423

\begin{align*} x_{1}^{\prime }&=-\frac {5 x_{1}}{2}+\frac {3 x_{2}}{2} \\ x_{2}^{\prime }&=-\frac {3 x_{1}}{2}+\frac {x_{2}}{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 3 \\ x_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.399

1424

\begin{align*} x_{1}^{\prime }&=2 x_{1}+\frac {3 x_{2}}{2} \\ x_{2}^{\prime }&=-\frac {3 x_{1}}{2}-x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 3 \\ x_{2} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.406

1425

\begin{align*} x_{1}^{\prime }&=3 x_{1}+9 x_{2} \\ x_{2}^{\prime }&=-x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.362

1426

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=-4 x_{1}+x_{2} \\ x_{3}^{\prime }&=3 x_{1}+6 x_{2}+2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -1 \\ x_{2} \left (0\right ) &= 2 \\ x_{3} \left (0\right ) &= -30 \\ \end{align*}

system_of_ODEs

0.638

1427

\begin{align*} x_{1}^{\prime }&=-\frac {5 x_{1}}{2}+x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}-\frac {5 x_{2}}{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2}-\frac {5 x_{3}}{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 3 \\ x_{3} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.547

1428

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2}+t \\ \end{align*}

system_of_ODEs

0.776

1429

\begin{align*} x_{1}^{\prime }&=x_{1}+\sqrt {3}\, x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=\sqrt {3}\, x_{1}-x_{2}+\sqrt {3}\, {\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

1.530

1430

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2}-\cos \left (t \right ) \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+\sin \left (t \right ) \\ \end{align*}

system_of_ODEs

0.734

1431

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+{\mathrm e}^{-2 t} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2}-2 \,{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.601

1432

\begin{align*} x_{1}^{\prime }&=4 x_{1}-2 x_{2}+\frac {1}{t^{3}} \\ x_{2}^{\prime }&=8 x_{1}-4 x_{2}-\frac {1}{t^{2}} \\ \end{align*}

system_of_ODEs

0.550

1433

\begin{align*} x_{1}^{\prime }&=-4 x_{1}+2 x_{2}+\frac {1}{t} \\ x_{2}^{\prime }&=2 x_{1}-x_{2}+\frac {2}{t}+4 \\ \end{align*}

system_of_ODEs

0.692

1434

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+2 \,{\mathrm e}^{t} \\ x_{2}^{\prime }&=4 x_{1}+x_{2}-{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.691

1435

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2}-{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.744

1436

\begin{align*} x_{1}^{\prime }&=-\frac {5 x_{1}}{4}+\frac {3 x_{2}}{4}+2 t \\ x_{2}^{\prime }&=\frac {3 x_{1}}{4}-\frac {5 x_{2}}{4}+{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.834

1437

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+\sqrt {2}\, x_{2}+{\mathrm e}^{-t} \\ x_{2}^{\prime }&=\sqrt {2}\, x_{1}-2 x_{2}-{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

1.230

1438

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+\cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.888

1439

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2}+\csc \left (t \right ) \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+\sec \left (t \right ) \\ \end{align*}

system_of_ODEs

1.070

1440

\begin{align*} x_{1}^{\prime }&=-\frac {x_{1}}{2}-\frac {x_{2}}{8}+\frac {{\mathrm e}^{-\frac {t}{2}}}{2} \\ x_{2}^{\prime }&=2 x_{1}-\frac {x_{2}}{2} \\ \end{align*}

system_of_ODEs

0.725

1441

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+3 t \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= \alpha _{1} \\ x_{2} \left (0\right ) &= \alpha _{2} \\ \end{align*}

system_of_ODEs

0.841

1442

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.417

1443

\begin{align*} x_{1}^{\prime }&=5 x_{1}-x_{2} \\ x_{2}^{\prime }&=3 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.413

1444

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2} \\ x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.427

1445

\begin{align*} x_{1}^{\prime }&=x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\ \end{align*}

system_of_ODEs

0.327

1446

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-3 x_{2} \\ \end{align*}

system_of_ODEs

0.489

1447

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.400

1448

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.513

1449

\begin{align*} x_{1}^{\prime }&=-x_{1}-x_{2} \\ x_{2}^{\prime }&=-\frac {5 x_{2}}{2} \\ \end{align*}

system_of_ODEs

0.383

1450

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.332

1451

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-5 x_{1} \\ \end{align*}

system_of_ODEs

0.872

1452

\begin{align*} x_{1}^{\prime }&=-x_{1} \\ x_{2}^{\prime }&=-x_{2} \\ \end{align*}

system_of_ODEs

0.258

1453

\begin{align*} x_{1}^{\prime }&=2 x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }&=\frac {9 x_{1}}{5}-x_{2} \\ \end{align*}

system_of_ODEs

0.530

1454

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}-2 \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.825

1455

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2}-2 \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+1 \\ \end{align*}

system_of_ODEs

0.654

1456

\begin{align*} x_{1}^{\prime }&=-x_{1}-x_{2}-1 \\ x_{2}^{\prime }&=2 x_{1}-x_{2}+5 \\ \end{align*}

system_of_ODEs

0.868

1457

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.348

1458

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.343

1459

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.330

1460

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.379

1461

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.368

1462

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y&=t \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.174

1463

\begin{align*} t \left (-1+t \right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.046

1464

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.047

1465

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.052

1466

\begin{align*} x y^{\prime \prime \prime }-y^{\prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.185

1467

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.125

1468

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.088

1469

\begin{align*} t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.042

1470

\begin{align*} \left (2-t \right ) y^{\prime \prime \prime }+\left (2 t -3\right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

1471

\begin{align*} t^{2} \left (t +3\right ) y^{\prime \prime \prime }-3 t \left (t +2\right ) y^{\prime \prime }+6 \left (t +1\right ) y^{\prime }-6 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.044

1472

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.059

1473

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.069

1474

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.056

1475

\begin{align*} y^{\left (6\right )}+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.091

1476

\begin{align*} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.076

1477

\begin{align*} y^{\left (6\right )}-y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.062

1478

\begin{align*} y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.069

1479

\begin{align*} y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.107

1480

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.069

1481

\begin{align*} y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.055

1482

\begin{align*} y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.075

1483

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.200

1484

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.143

1485

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.157

1486

\begin{align*} y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.193

1487

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.167

1488

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.230

1489

\begin{align*} y^{\prime \prime \prime \prime }-4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 1 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.266

1490

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=\cos \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.230

1491

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.195

1492

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.697

1493

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

1494

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.549

1495

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

1496

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \operatorname {otherwise} \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.644

1497

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.460

1498

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.151

1499

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.306

1500

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.516