| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-\frac {5 x_{2}}{2} \\
x_{2}^{\prime }&=\frac {9 x_{1}}{5}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2} \\
x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.544 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-5 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-2 x_{3} \\
x_{3}^{\prime }&=3 x_{1}+2 x_{2}+x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.773 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+2 x_{3} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
x_{3}^{\prime }&=-2 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.994 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-x_{1}-x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= -2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.559 |
|
| \begin{align*}
x_{1}^{\prime }&=\frac {3 x_{1}}{4}-2 x_{2} \\
x_{2}^{\prime }&=x_{1}-\frac {5 x_{2}}{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {4 x_{1}}{5}+2 x_{2} \\
x_{2}^{\prime }&=-x_{1}+\frac {6 x_{2}}{5} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{4}+x_{2} \\
x_{2}^{\prime }&=-x_{1}-\frac {x_{2}}{4} \\
x_{3}^{\prime }&=-\frac {x_{3}}{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.620 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{4}+x_{2} \\
x_{2}^{\prime }&=-x_{1}-\frac {x_{2}}{4} \\
x_{3}^{\prime }&=\frac {x_{3}}{10} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.677 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{2}-\frac {x_{2}}{8} \\
x_{2}^{\prime }&=2 x_{1}-\frac {x_{2}}{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.340 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=8 x_{1}-4 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {3 x_{1}}{2}+x_{2} \\
x_{2}^{\prime }&=-\frac {x_{1}}{4}-\frac {x_{2}}{2} \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.355 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+\frac {5 x_{2}}{2} \\
x_{2}^{\prime }&=-\frac {5 x_{1}}{2}+2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=-x_{2}+x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.536 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {5 x_{1}}{2}+\frac {3 x_{2}}{2} \\
x_{2}^{\prime }&=-\frac {3 x_{1}}{2}+\frac {x_{2}}{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+\frac {3 x_{2}}{2} \\
x_{2}^{\prime }&=-\frac {3 x_{1}}{2}-x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= -2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+9 x_{2} \\
x_{2}^{\prime }&=-x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=-4 x_{1}+x_{2} \\
x_{3}^{\prime }&=3 x_{1}+6 x_{2}+2 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -1 \\
x_{2} \left (0\right ) &= 2 \\
x_{3} \left (0\right ) &= -30 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {5 x_{1}}{2}+x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}-\frac {5 x_{2}}{2}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2}-\frac {5 x_{3}}{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 3 \\
x_{3} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.547 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2}+t \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.776 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+\sqrt {3}\, x_{2}+{\mathrm e}^{t} \\
x_{2}^{\prime }&=\sqrt {3}\, x_{1}-x_{2}+\sqrt {3}\, {\mathrm e}^{-t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.530 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2}-\cos \left (t \right ) \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+\sin \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.734 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+{\mathrm e}^{-2 t} \\
x_{2}^{\prime }&=4 x_{1}-2 x_{2}-2 \,{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}-2 x_{2}+\frac {1}{t^{3}} \\
x_{2}^{\prime }&=8 x_{1}-4 x_{2}-\frac {1}{t^{2}} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.550 |
|
| \begin{align*}
x_{1}^{\prime }&=-4 x_{1}+2 x_{2}+\frac {1}{t} \\
x_{2}^{\prime }&=2 x_{1}-x_{2}+\frac {2}{t}+4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+2 \,{\mathrm e}^{t} \\
x_{2}^{\prime }&=4 x_{1}+x_{2}-{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2}-{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.744 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {5 x_{1}}{4}+\frac {3 x_{2}}{4}+2 t \\
x_{2}^{\prime }&=\frac {3 x_{1}}{4}-\frac {5 x_{2}}{4}+{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.834 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+\sqrt {2}\, x_{2}+{\mathrm e}^{-t} \\
x_{2}^{\prime }&=\sqrt {2}\, x_{1}-2 x_{2}-{\mathrm e}^{-t} \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 1.230 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+\cos \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.888 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2}+\csc \left (t \right ) \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+\sec \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.070 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{2}-\frac {x_{2}}{8}+\frac {{\mathrm e}^{-\frac {t}{2}}}{2} \\
x_{2}^{\prime }&=2 x_{1}-\frac {x_{2}}{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.725 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+3 t \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= \alpha _{1} \\
x_{2} \left (0\right ) &= \alpha _{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.841 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.417 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}-x_{2} \\
x_{2}^{\prime }&=3 x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-x_{2} \\
x_{2}^{\prime }&=-\frac {5 x_{2}}{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-5 x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1} \\
x_{2}^{\prime }&=-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-\frac {5 x_{2}}{2} \\
x_{2}^{\prime }&=\frac {9 x_{1}}{5}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.530 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}-2 \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.825 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2}-2 \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-x_{2}-1 \\
x_{2}^{\prime }&=2 x_{1}-x_{2}+5 \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.868 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.343 |
|
| \begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y&=t \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
t \left (-1+t \right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y&=0 \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.046 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.047 |
|
| \begin{align*}
y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.052 |
|
| \begin{align*}
x y^{\prime \prime \prime }-y^{\prime \prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.125 |
|
| \begin{align*}
y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.088 |
|
| \begin{align*}
t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y&=0 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.042 |
|
| \begin{align*}
\left (2-t \right ) y^{\prime \prime \prime }+\left (2 t -3\right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.040 |
|
| \begin{align*}
t^{2} \left (t +3\right ) y^{\prime \prime \prime }-3 t \left (t +2\right ) y^{\prime \prime }+6 \left (t +1\right ) y^{\prime }-6 y&=0 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.044 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.059 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.069 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.056 |
|
| \begin{align*}
y^{\left (6\right )}+y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.091 |
|
| \begin{align*}
y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y&=0 \\
\end{align*} | [[_high_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.076 |
|
| \begin{align*}
y^{\left (6\right )}-y^{\prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.062 |
|
| \begin{align*}
y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.069 |
|
| \begin{align*}
y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.069 |
|
| \begin{align*}
y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.055 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.075 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.143 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.167 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 1 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime \prime }+\omega ^{2} y&=\cos \left (2 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.636 |
|
| \begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.523 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \operatorname {otherwise} \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.644 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.151 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.306 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.516 |
|