2.2.14 Problems 1301 to 1400

Table 2.41: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

1301

\begin{align*} y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{-t^{2}} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.793

1302

\begin{align*} t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.243

1303

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.249

1304

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

1305

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

1306

\begin{align*} 4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

1307

\begin{align*} y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.255

1308

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

1309

\begin{align*} 4 y^{\prime \prime }+17 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.200

1310

\begin{align*} 16 y^{\prime \prime }+24 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

1311

\begin{align*} 25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.249

1312

\begin{align*} 2 y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

1313

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.404

1314

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.427

1315

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+82 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.415

1316

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.413

1317

\begin{align*} 4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.393

1318

\begin{align*} y^{\prime \prime }-y^{\prime }+\frac {y}{4}&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _missing_x]]

0.330

1319

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.096

1320

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.095

1321

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.093

1322

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.102

1323

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.198

1324

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.099

1325

\begin{align*} x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.131

1326

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.109

1327

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.778

1328

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.745

1329

\begin{align*} 2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.097

1330

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.980

1331

\begin{align*} 4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.774

1332

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.024

1333

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

1334

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.349

1335

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

1336

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.418

1337

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

1338

\begin{align*} y^{\prime \prime }+9 y&=9 \sec \left (3 t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.049

1339

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.515

1340

\begin{align*} y^{\prime \prime }+4 y&=3 \csc \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.643

1341

\begin{align*} y^{\prime \prime }+y&=2 \sec \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

1342

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

1343

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

1344

\begin{align*} y^{\prime \prime }+4 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.509

1345

\begin{align*} t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.688

1346

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=2 t^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.796

1347

\begin{align*} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.675

1348

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.010

1349

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.497

1350

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=g \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.017

1351

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.717

1352

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.598

1353

\begin{align*} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.616

1354

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right ) {\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.038

1355

\begin{align*} u^{\prime \prime }+2 u&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.243

1356

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u&=0 \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.421

1357

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (\frac {t}{4}\right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

1358

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (2 t \right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.576

1359

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (6 t \right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.615

1360

\begin{align*} u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5}&=\cos \left (t \right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

0.331

1361

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.251

1362

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.298

1363

\begin{align*} y^{\prime \prime }+k^{2} x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.280

1364

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.359

1365

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.370

1366

\begin{align*} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.314

1367

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.316

1368

\begin{align*} \left (-x^{2}+4\right ) y^{\prime \prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.329

1369

\begin{align*} \left (-x^{2}+3\right ) y^{\prime \prime }-3 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.369

1370

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.296

1371

\begin{align*} 2 y^{\prime \prime }+y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.323

1372

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.279

1373

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.306

1374

\begin{align*} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.286

1375

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ y \left (0\right ) &= -3 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.315

1376

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +\lambda y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.382

1377

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.273

1378

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.308

1379

\begin{align*} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.277

1380

\begin{align*} \left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.371

1381

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.256

1382

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.352

1383

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.289

1384

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.570

1385

\begin{align*} x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y \ln \left (x \right )&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.684

1386

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+y \sin \left (x \right )&=0 \\ y \left (0\right ) &= a_{0} \\ y^{\prime }\left (0\right ) &= a_{1} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.761

1387

\begin{align*} y^{\prime \prime }+4 y^{\prime }+6 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.385

1388

\begin{align*} y^{\prime \prime }+4 y^{\prime }+6 y x&=0 \\ \end{align*}
Series expansion around \(x=4\).

[[_2nd_order, _with_linear_symmetries]]

0.468

1389

\begin{align*} \left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.461

1390

\begin{align*} \left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=4\).

[[_2nd_order, _with_linear_symmetries]]

0.549

1391

\begin{align*} \left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=-4\).

[[_2nd_order, _with_linear_symmetries]]

0.558

1392

\begin{align*} \left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.444

1393

\begin{align*} \left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=2\).

[[_2nd_order, _with_linear_symmetries]]

0.603

1394

\begin{align*} y^{\prime \prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_Emden, _Fowler]]

0.411

1395

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.464

1396

\begin{align*} y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.205

1397

\begin{align*} y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.217

1398

\begin{align*} \left (1-x \right ) y^{\prime }&=y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.234

1399

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.514

1400

\begin{align*} x_{1}^{\prime }&=-\frac {x_{1}}{10}+\frac {3 x_{2}}{40} \\ x_{2}^{\prime }&=\frac {x_{1}}{10}-\frac {x_{2}}{5} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -17 \\ x_{2} \left (0\right ) &= -21 \\ \end{align*}

system_of_ODEs

0.482