| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{-t^{2}} y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.793 |
|
| \begin{align*}
t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.243 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.249 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
4 y^{\prime \prime }+17 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
16 y^{\prime \prime }+24 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.249 |
|
| \begin{align*}
2 y^{\prime \prime }+2 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+82 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.393 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+\frac {y}{4}&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.096 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.095 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.093 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.102 |
|
| \begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.198 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.099 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.778 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4}&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.745 |
|
| \begin{align*}
2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.097 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| \begin{align*}
4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.774 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.024 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.413 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=9 \sec \left (3 t \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.049 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 t}}{t^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.515 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=3 \csc \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sec \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.491 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=g \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=g \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=2 t^{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.796 |
|
| \begin{align*}
t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.675 |
|
| \begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.010 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=g \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.017 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.717 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.598 |
|
| \begin{align*}
t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.616 |
|
| \begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right ) {\mathrm e}^{-t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 1.038 |
|
| \begin{align*}
u^{\prime \prime }+2 u&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.243 |
|
| \begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u&=0 \\
u \left (0\right ) &= 0 \\
u^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (\frac {t}{4}\right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.636 |
|
| \begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (2 t \right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| \begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (6 t \right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| \begin{align*}
u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5}&=\cos \left (t \right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.331 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
\left (-x^{2}+4\right ) y^{\prime \prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
\left (-x^{2}+3\right ) y^{\prime \prime }-3 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime } x +3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.286 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
y \left (0\right ) &= -3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.315 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime } x +\lambda y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.308 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| \begin{align*}
\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.371 |
|
| \begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y \ln \left (x \right )&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| \begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+y \sin \left (x \right )&=0 \\
y \left (0\right ) &= a_{0} \\
y^{\prime }\left (0\right ) &= a_{1} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.761 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y x&=0 \\
\end{align*} Series expansion around \(x=4\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=4\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=-4\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.558 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=2\). | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.603 |
|
| \begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| \begin{align*}
y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| \begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{10}+\frac {3 x_{2}}{40} \\
x_{2}^{\prime }&=\frac {x_{1}}{10}-\frac {x_{2}}{5} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -17 \\
x_{2} \left (0\right ) &= -21 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.482 |
|