2.2.210 Problems 20901 to 21000

Table 2.433: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20901

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=\infty \).

[[_Emden, _Fowler]]

0.160

20902

\begin{align*} x^{2} \left (x -2\right ) y^{\prime \prime }+4 \left (x -2\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=\infty \).

[[_2nd_order, _with_linear_symmetries]]

5.746

20903

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.843

20904

\begin{align*} y^{\prime \prime }+\frac {y}{4 x^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.459

20905

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.666

20906

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{2 x}-\frac {\left (x +1\right ) y}{2 x^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.758

20907

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.683

20908

\begin{align*} 2 x \left (x +1\right ) y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.814

20909

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.627

20910

\begin{align*} y^{\prime \prime } x -\left (x +4\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.883

20911

\begin{align*} 2 n y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.465

20912

\begin{align*} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.285

20913

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.275

20914

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.230

20915

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{2 t} t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.261

20916

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=t^{2} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.260

20917

\begin{align*} y^{\prime \prime }-3 y^{\prime }-2 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.306

20918

\begin{align*} y^{\prime \prime }+4 y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.009

20919

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.788

20920

\begin{align*} y^{\prime \prime }+6 y^{\prime }+18 y&=2 \operatorname {Heaviside}\left (\pi -t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

4.218

20921

\begin{align*} x^{\prime }&=2 x+3 y+2 \sin \left (2 t \right ) \\ y^{\prime }&=-3 x+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.346

20922

\begin{align*} x^{\prime }&=-4 x-y+{\mathrm e}^{-t} \\ y^{\prime }&=x-2 y+2 \,{\mathrm e}^{-3 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.300

20923

\begin{align*} x^{\prime }&=x-y+2 \cos \left (t \right ) \\ y^{\prime }&=x+y+3 \sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 3 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.304

20924

\begin{align*} x^{\prime }&=-4 x-y \\ y^{\prime }&=x-2 y \\ \end{align*}

system_of_ODEs

0.348

20925

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=-2 y \\ \end{align*}

system_of_ODEs

0.314

20926

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=-5 x \\ \end{align*}

system_of_ODEs

0.484

20927

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-3 x \\ \end{align*}

system_of_ODEs

0.501

20928

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=y \\ \end{align*}

system_of_ODEs

0.307

20929

\begin{align*} x^{\prime }&=2 x+3 y \\ y^{\prime }&=-3 x+2 y \\ \end{align*}

system_of_ODEs

0.454

20930

\begin{align*} x^{\prime }&=3 x-y \\ y^{\prime }&=2 x-2 y \\ \end{align*}

system_of_ODEs

0.636

20931

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=-5 x \\ \end{align*}

system_of_ODEs

0.432

20932

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=y \\ \end{align*}

system_of_ODEs

0.292

20933

\begin{align*} x^{\prime }&=2 x+3 y \\ y^{\prime }&=-3 x+2 y \\ \end{align*}

system_of_ODEs

0.411

20934

\begin{align*} x^{\prime }&=-4 x-y \\ y^{\prime }&=x-2 y \\ \end{align*}

system_of_ODEs

0.353

20935

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.417

20936

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=-2 x+2 y \\ \end{align*}

system_of_ODEs

0.376

20937

\begin{align*} x^{\prime }&=12 x-15 y \\ y^{\prime }&=4 x-4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.475

20938

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=5 x-2 y \\ \end{align*}

system_of_ODEs

0.457

20939

\begin{align*} x^{\prime }&=4 x-13 y \\ y^{\prime }&=2 x-6 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.607

20940

\begin{align*} x^{\prime }&=4 x+2 y \\ y^{\prime }&=3 x+3 y \\ \end{align*}

system_of_ODEs

0.425

20941

\begin{align*} x^{\prime }&=3 x+5 y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.611

20942

\begin{align*} x^{\prime }&=8 x-5 y \\ y^{\prime }&=16 x+8 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.580

20943

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=2 x-3 y \\ \end{align*}

system_of_ODEs

0.352

20944

\begin{align*} x^{\prime }&=5 x+4 y+2 z \\ y^{\prime }&=4 x+5 y+2 z \\ z^{\prime }&=2 x+2 y+2 z \\ \end{align*}

system_of_ODEs

0.642

20945

\begin{align*} x^{\prime }&=2 x-y+{\mathrm e}^{t} \\ y^{\prime }&=3 x-2 y+t \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.942

20946

\begin{align*} x^{\prime }&=5 x+3 y+1 \\ y^{\prime }&=-6 x-4 y+{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.708

20947

\begin{align*} x^{\prime }&=2 x-y+\cos \left (t \right ) \\ y^{\prime }&=5 x-2 y+\sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.979

20948

\begin{align*} y^{\prime }&=k y-c y^{2} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_quadrature]

12.358

20949

\begin{align*} y^{\prime }&=y^{2}-6 y-16 \\ \end{align*}

[_quadrature]

1.474

20950

\begin{align*} y^{\prime }&=\cos \left (y\right ) \\ \end{align*}

[_quadrature]

21.076

20951

\begin{align*} y^{\prime }&=y \left (y-2\right ) \left (3+y\right ) \\ \end{align*}

[_quadrature]

3.166

20952

\begin{align*} y^{\prime }&=y^{2} \left (1+y\right ) \left (y-4\right ) \\ \end{align*}

[_quadrature]

53.354

20953

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_quadrature]

1.404

20954

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (0\right ) &= {\frac {1}{4}} \\ \end{align*}

[_quadrature]

1.858

20955

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (0\right ) &= {\frac {3}{2}} \\ \end{align*}

[_quadrature]

2.091

20956

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}

[_quadrature]

1.696

20957

\begin{align*} y^{\prime }&=y-\mu y^{2} \\ \end{align*}

[_quadrature]

2.851

20958

\begin{align*} y^{\prime }&=y \left (\mu -y\right ) \left (\mu -2 y\right ) \\ \end{align*}

[_quadrature]

74.530

20959

\begin{align*} x^{\prime }&=\mu -x^{3} \\ \end{align*}

[_quadrature]

7.087

20960

\begin{align*} x^{\prime }&=x-\frac {\mu x}{1+x^{2}} \\ \end{align*}

[_quadrature]

25.166

20961

\begin{align*} x^{\prime }&=x^{3}+a x^{2}-b x \\ \end{align*}

[_quadrature]

57.283

20962

\begin{align*} y^{\prime }&=\frac {1+y}{2+x}-{\mathrm e}^{\frac {1+y}{2+x}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

32.688

20963

\begin{align*} y^{\prime }&=\frac {1+y}{2+x}+{\mathrm e}^{\frac {1+y}{2+x}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

14.630

20964

\begin{align*} y^{\prime }&=\frac {x +y+1}{2+x}-{\mathrm e}^{\frac {x +y+1}{2+x}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

29.241

20965

\begin{align*} y^{\prime }&=\frac {x +2 y+1}{2 x +2+y} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

75.780

20966

\begin{align*} y^{\prime }&=\frac {2 x +y+1}{x +2 y+2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

53.541

20967

\begin{align*} y^{\prime }&=3 y^{{2}/{3}} \\ \end{align*}

[_quadrature]

3.037

20968

\begin{align*} y^{\prime }&=\sqrt {y \left (1-y\right )} \\ \end{align*}

[_quadrature]

7.750

20969

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{-y^{2}}}{y \left (x^{2}+2 x \right )} \\ y \left (2\right ) &= 0 \\ \end{align*}

[_separable]

17.857

20970

\begin{align*} y^{\prime }&=\frac {y \ln \left (y\right )}{\sin \left (x \right )} \\ y \left (\frac {\pi }{2}\right ) &= {\mathrm e}^{{\mathrm e}} \\ \end{align*}

[_separable]

29.682

20971

\begin{align*} y^{\prime }&=\frac {\cos \left (x \right )}{\cos \left (y\right )^{2}} \\ y \left (\pi \right ) &= \frac {\pi }{4} \\ \end{align*}

[_separable]

3.147

20972

\begin{align*} y^{\prime }&=\left (x -y+3\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

9.120

20973

\begin{align*} y^{\prime }&=\frac {2 y \left (y-1\right )}{x \left (2-y\right )} \\ \end{align*}

[_separable]

75.521

20974

\begin{align*} y&=y^{\prime } x -\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

165.532

20975

\begin{align*} y^{\prime }&=f \left (x \right ) y \ln \left (\frac {1}{y}\right ) \\ \end{align*}

[_separable]

14.245

20976

\begin{align*} y^{\prime }-y+y^{2} {\mathrm e}^{x}+5 \,{\mathrm e}^{-x}&=0 \\ y \left (0\right ) &= \eta \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

14.710

20977

\begin{align*} \cos \left (x +y^{2}\right )+3 y+\left (2 y \cos \left (x +y^{2}\right )+3 x \right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

19.078

20978

\begin{align*} x y^{2}-y^{3}+\left (1-x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

10.027

20979

\begin{align*} \left (y x +1\right ) y&=y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

7.368

20980

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) \\ \end{align*}

[_linear]

4.407

20981

\begin{align*} y&=y^{\prime } x -\sqrt {y^{\prime }-1} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.986

20982

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.233

20983

\begin{align*} y&=y^{\prime } x +a y^{\prime }+b \\ \end{align*}

[_separable]

8.400

20984

\begin{align*} y&=x {y^{\prime }}^{2}+\ln \left ({y^{\prime }}^{2}\right ) \\ \end{align*}

[_dAlembert]

53.731

20985

\begin{align*} x&=y \left (y^{\prime }+\frac {1}{y^{\prime }}\right )+{y^{\prime }}^{5} \\ \end{align*}

[_dAlembert]

1.155

20986

\begin{align*} y^{\prime }&={\mathrm e}^{x}+x \cos \left (y\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[‘y=_G(x,y’)‘]

0.904

20987

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[_Abel]

0.168

20988

\begin{align*} u^{\prime }&=u^{3} \\ u \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.132

20989

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Abel]

28.991

20990

\begin{align*} y^{\prime }&=x +\sqrt {1+y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘y=_G(x,y’)‘]

327.753

20991

\begin{align*} x^{\prime }&=x \cos \left (t \right )-\sin \left (t \right ) y \\ y^{\prime }&=x \sin \left (t \right )+y \cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.052

20992

\begin{align*} x^{\prime }&=\left (3 t -1\right ) x-\left (1-t \right ) y+t \,{\mathrm e}^{t^{2}} \\ y^{\prime }&=-\left (t +2\right ) x+\left (t -2\right ) y-{\mathrm e}^{t^{2}} \\ \end{align*}

system_of_ODEs

0.037

20993

\begin{align*} x^{\prime }&=2 x-4 y \\ y^{\prime }&=-x+2 y \\ \end{align*}

system_of_ODEs

0.404

20994

\begin{align*} x^{\prime }&=3 x+6 y \\ y^{\prime }&=-2 x-3 y \\ \end{align*}

system_of_ODEs

1.083

20995

\begin{align*} x^{\prime }&=8 x+y \\ y^{\prime }&=-4 x+4 y \\ \end{align*}

system_of_ODEs

0.367

20996

\begin{align*} x^{\prime }&=x-y+2 z \\ y^{\prime }&=-x+y+2 z \\ z^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.607

20997

\begin{align*} x^{\prime }&=-x+y-z \\ y^{\prime }&=2 x-y+2 z \\ z^{\prime }&=2 x+2 y-z \\ \end{align*}

system_of_ODEs

0.711

20998

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.623

20999

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.732

21000

\begin{align*} u^{\prime \prime }+2 a u^{\prime }+\omega ^{2} u&=c \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.920