2.2.209 Problems 20801 to 20900

Table 2.431: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20801

\begin{align*} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+6 x +2\right ) y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.856

20802

\begin{align*} y^{\prime \prime }+a^{2} y&=\sec \left (a x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.340

20803

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.855

20804

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.126

20805

\begin{align*} y^{\prime \prime }+\left (1-\cot \left (x \right )\right ) y^{\prime }-\cot \left (x \right ) y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.859

20806

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.133

20807

\begin{align*} x^{\prime }-7 x+y&=0 \\ y^{\prime }-2 x-5 y&=0 \\ \end{align*}

system_of_ODEs

0.545

20808

\begin{align*} x^{\prime }+5 x+y&={\mathrm e}^{t} \\ y^{\prime }-x+3 y&={\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.626

20809

\begin{align*} 4 x^{\prime }+9 y^{\prime }+11 x+31 y&={\mathrm e}^{t} \\ 3 x^{\prime }+7 y^{\prime }+8 x+24 y&={\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.659

20810

\begin{align*} t x^{\prime }&=t -2 x \\ t y^{\prime }&=t x+t y+2 x-t \\ \end{align*}

system_of_ODEs

0.035

20811

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{x}}{2 y} \\ \end{align*}

[_separable]

3.700

20812

\begin{align*} y^{\prime }&=y^{2} \left (t^{2}+1\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

4.276

20813

\begin{align*} y^{\prime }&=\frac {\sqrt {1-y^{2}}}{x} \\ \end{align*}

[_separable]

134.348

20814

\begin{align*} y^{\prime } x&=y \left (1-2 y\right ) \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

10.683

20815

\begin{align*} y^{\prime }-y \sin \left (x \right )&=\sin \left (x \right ) \\ \end{align*}

[_separable]

3.550

20816

\begin{align*} y^{\prime } x -2 y&=x^{2} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_linear]

6.862

20817

\begin{align*} s^{\prime }+2 s&=s t^{2} \\ s \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.554

20818

\begin{align*} x^{\prime }-2 x&={\mathrm e}^{2 t} t \\ \end{align*}

[[_linear, ‘class A‘]]

3.062

20819

\begin{align*} y^{\prime }+y&=\sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

4.489

20820

\begin{align*} y^{\prime }-\frac {3 y}{x}&=x^{3} \\ y \left (1\right ) &= 4 \\ \end{align*}

[_linear]

6.311

20821

\begin{align*} 3 x^{2}+6 x y^{2}+\left (6 x^{2}+4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

26.973

20822

\begin{align*} x +y^{2}-2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

8.126

20823

\begin{align*} \sin \left (y x \right )+x y \cos \left (y x \right )+x^{2} \cos \left (y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact]

24.533

20824

\begin{align*} x^{2}+y-y^{\prime } x&=0 \\ \end{align*}

[_linear]

5.992

20825

\begin{align*} 2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

11.938

20826

\begin{align*} y^{\prime }&=\frac {x}{y}-\frac {x}{1+y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

8.279

20827

\begin{align*} y&=y^{\prime } x +\frac {1}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.809

20828

\begin{align*} y&=2 y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

12.890

20829

\begin{align*} y^{\prime }+2 y x&=2 x y^{2} \\ \end{align*}

[_separable]

6.310

20830

\begin{align*} y^{\prime }+2 y x&=y^{2} {\mathrm e}^{x^{2}} \\ \end{align*}

[_Bernoulli]

6.215

20831

\begin{align*} y^{\prime } x -y^{2}+\left (2 x +1\right ) y&=x^{2}+2 x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

9.926

20832

\begin{align*} {\mathrm e}^{-x} y^{\prime }+y^{2}-2 \,{\mathrm e}^{x} y&=1-{\mathrm e}^{2 x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

279.825

20833

\begin{align*} y^{\prime }&=\frac {y x +y^{2}}{x^{2}} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.954

20834

\begin{align*} x^{2}-y x +y^{2}-x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

49.556

20835

\begin{align*} y x -\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.856

20836

\begin{align*} x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

34.056

20837

\begin{align*} 20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.218

20838

\begin{align*} y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.706

20839

\begin{align*} 8 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.608

20840

\begin{align*} x^{\prime \prime }-x^{\prime }-6 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

20841

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.088

20842

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.522

20843

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.973

20844

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.248

20845

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.702

20846

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=6 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.370

20847

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.323

20848

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=5+10 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

20849

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.361

20850

\begin{align*} y^{\prime \prime }+5 y^{\prime }-6 y&=3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.462

20851

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.003

20852

\begin{align*} y^{\prime \prime }+y^{\prime }&=3 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.008

20853

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x}+1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.433

20854

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.649

20855

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

20856

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.872

20857

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\cos \left ({\mathrm e}^{x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.716

20858

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.540

20859

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

2.004

20860

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.118

20861

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +3 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

2.339

20862

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.962

20863

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.897

20864

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.637

20865

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.213

20866

\begin{align*} -y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.139

20867

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=3 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.301

20868

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=x^{2}+x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.957

20869

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.546

20870

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +3 y&=5 x^{2} \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.446

20871

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=20 \,{\mathrm e}^{-2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.668

20872

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (3 x \right ) \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.772

20873

\begin{align*} y^{\prime \prime }+y&=1+2 \cos \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.838

20874

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}-x \\ y \left (1\right ) &= \pi \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.999

20875

\begin{align*} x^{\prime \prime }+x&=5 t^{2} \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.687

20876

\begin{align*} x^{\prime \prime }+x&=2 \tan \left (t \right ) \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.270

20877

\begin{align*} y^{\prime \prime }-k^{2} y&=f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.314

20878

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.516

20879

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.603

20880

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -15 y&={\mathrm e}^{x} x^{4} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.712

20881

\begin{align*} y^{\prime }&=y \\ y \left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.226

20882

\begin{align*} y^{\prime }&=2 y x -x^{3} \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[_linear]

0.291

20883

\begin{align*} \left (x +1\right ) y^{\prime }&=y p \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.303

20884

\begin{align*} y^{\prime }&=\sqrt {y^{2}+x^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[‘y=_G(x,y’)‘]

0.269

20885

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.323

20886

\begin{align*} y^{\prime }&=y-x \\ y \left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_linear, ‘class A‘]]

0.263

20887

\begin{align*} \left (x +1\right ) y^{\prime }&=y p \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.304

20888

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.307

20889

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.356

20890

\begin{align*} y^{\prime \prime }-y^{\prime } x +3 y&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[_Hermite]

0.575

20891

\begin{align*} y^{\prime \prime } x -y^{\prime } x +y&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.585

20892

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_Emden, _Fowler]]

0.553

20893

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.400

20894

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.615

20895

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.669

20896

\begin{align*} x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.601

20897

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\frac {3 y^{\prime }}{2+x}+\frac {\left (1-x \right )^{2} y}{x +3}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.790

20898

\begin{align*} \frac {y^{\prime \prime }}{x}+\frac {3 \left (x -4\right ) y^{\prime }}{6+x}+\frac {x^{2} \left (x -2\right ) y}{x -1}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.710

20899

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.309

20900

\begin{align*} x^{2} \left (x -2\right ) y^{\prime \prime }+4 \left (x -2\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.254