2.2.186 Problems 18501 to 18600

Table 2.385: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

18501

\begin{align*} y^{\prime }&=\frac {3 x^{2}+1}{12 y^{2}-12 y} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

5.763

18502

\begin{align*} y^{\prime }&=\frac {2 x^{2}}{2 y^{2}-6} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_separable]

1.601

18503

\begin{align*} y^{\prime }&=2 y^{2}+x y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.441

18504

\begin{align*} y^{\prime }&=\frac {6-{\mathrm e}^{x}}{3+2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.116

18505

\begin{align*} y^{\prime }&=\frac {2 \cos \left (2 x \right )}{10+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

2.174

18506

\begin{align*} y^{\prime }&=2 \left (x +1\right ) \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.936

18507

\begin{align*} y^{\prime }&=\frac {t \left (4-y\right ) y}{3} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

4.058

18508

\begin{align*} y^{\prime }&=\frac {t y \left (4-y\right )}{t +1} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

4.056

18509

\begin{align*} y^{\prime }&=\frac {a y+b}{d +c y} \\ \end{align*}

[_quadrature]

1.423

18510

\begin{align*} y^{\prime }+4 y&={\mathrm e}^{-2 t}+t \\ \end{align*}

[[_linear, ‘class A‘]]

1.924

18511

\begin{align*} -2 y+y^{\prime }&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

2.132

18512

\begin{align*} y+y^{\prime }&=1+t \,{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.281

18513

\begin{align*} \frac {y}{t}+y^{\prime }&=5+\cos \left (2 t \right ) \\ \end{align*}

[_linear]

1.693

18514

\begin{align*} -2 y+y^{\prime }&=3 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.069

18515

\begin{align*} 2 y+t y^{\prime }&=\sin \left (t \right ) \\ \end{align*}

[_linear]

1.751

18516

\begin{align*} 2 t y+y^{\prime }&=16 t \,{\mathrm e}^{-t^{2}} \\ \end{align*}

[_linear]

3.026

18517

\begin{align*} 4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\ \end{align*}

[_linear]

2.721

18518

\begin{align*} y+2 y^{\prime }&=3 t \\ \end{align*}

[[_linear, ‘class A‘]]

0.789

18519

\begin{align*} -y+t y^{\prime }&=t^{3} {\mathrm e}^{-t} \\ \end{align*}

[_linear]

1.909

18520

\begin{align*} y+y^{\prime }&=5 \sin \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.641

18521

\begin{align*} y+2 y^{\prime }&=3 t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

1.471

18522

\begin{align*} -y+y^{\prime }&=2 \,{\mathrm e}^{2 t} t \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.562

18523

\begin{align*} y^{\prime }+2 y&=t \,{\mathrm e}^{-2 t} \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.402

18524

\begin{align*} t y^{\prime }+4 y&=t^{2}-t +1 \\ y \left (1\right ) &= {\frac {1}{4}} \\ \end{align*}

[_linear]

1.977

18525

\begin{align*} \frac {2 y}{t}+y^{\prime }&=\frac {\cos \left (t \right )}{t^{2}} \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_linear]

1.901

18526

\begin{align*} -2 y+y^{\prime }&={\mathrm e}^{2 t} \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_linear, ‘class A‘]]

1.093

18527

\begin{align*} 2 y+t y^{\prime }&=\sin \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= 3 \\ \end{align*}

[_linear]

1.875

18528

\begin{align*} 4 t^{2} y+t^{3} y^{\prime }&={\mathrm e}^{-t} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_linear]

1.853

18529

\begin{align*} \left (t +1\right ) y+t y^{\prime }&=t \\ y \left (\ln \left (2\right )\right ) &= 1 \\ \end{align*}

[_linear]

1.411

18530

\begin{align*} y^{\prime }-\frac {y}{3}&=3 \cos \left (t \right ) \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

1.684

18531

\begin{align*} -y+2 y^{\prime }&={\mathrm e}^{\frac {t}{3}} \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

1.231

18532

\begin{align*} -2 y+3 y^{\prime }&={\mathrm e}^{-\frac {\pi t}{2}} \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

1.436

18533

\begin{align*} \left (t +1\right ) y+t y^{\prime }&=2 t \,{\mathrm e}^{-t} \\ y \left (1\right ) &= a \\ \end{align*}

[_linear]

2.683

18534

\begin{align*} 2 y+t y^{\prime }&=\frac {\sin \left (t \right )}{t} \\ y \left (-\frac {\pi }{2}\right ) &= a \\ \end{align*}

[_linear]

1.891

18535

\begin{align*} y \cos \left (t \right )+\sin \left (t \right ) y^{\prime }&={\mathrm e}^{t} \\ y \left (1\right ) &= a \\ \end{align*}

[_linear]

26.003

18536

\begin{align*} \frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.713

18537

\begin{align*} y^{\prime }+\frac {4 y}{3}&=1-\frac {t}{4} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[[_linear, ‘class A‘]]

0.945

18538

\begin{align*} \frac {y}{4}+y^{\prime }&=3+2 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.021

18539

\begin{align*} -y+y^{\prime }&=1+3 \sin \left (t \right ) \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[[_linear, ‘class A‘]]

1.837

18540

\begin{align*} -\frac {3 y}{2}+y^{\prime }&=3 t +3 \,{\mathrm e}^{t} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[[_linear, ‘class A‘]]

2.069

18541

\begin{align*} y^{\prime }-6 y&=t^{6} {\mathrm e}^{6 t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.235

18542

\begin{align*} \frac {y}{t}+y^{\prime }&=3 \cos \left (2 t \right ) \\ \end{align*}

[_linear]

1.688

18543

\begin{align*} 2 y+t y^{\prime }&=\sin \left (t \right ) \\ \end{align*}

[_linear]

1.681

18544

\begin{align*} y+2 y^{\prime }&=3 t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

1.428

18545

\begin{align*} y \ln \left (t \right )+\left (t -3\right ) y^{\prime }&=2 t \\ y \left (1\right ) &= 2 \\ \end{align*}

[_linear]

5.450

18546

\begin{align*} y+\left (t -4\right ) t y^{\prime }&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

[_separable]

2.122

18547

\begin{align*} \tan \left (t \right ) y+y^{\prime }&=\sin \left (t \right ) \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_linear]

1.994

18548

\begin{align*} 2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\ y \left (-3\right ) &= 1 \\ \end{align*}

[_linear]

3.438

18549

\begin{align*} 2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\ y \left (1\right ) &= -3 \\ \end{align*}

[_linear]

2.165

18550

\begin{align*} y+\ln \left (t \right ) y^{\prime }&=\cot \left (t \right ) \\ y \left (2\right ) &= 3 \\ \end{align*}

[_linear]

3.582

18551

\begin{align*} y^{\prime }&=\frac {t -y}{2 t +5 y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.395

18552

\begin{align*} y^{\prime }&=\sqrt {1-t^{2}-y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

1.849

18553

\begin{align*} y^{\prime }&=\frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.745

18554

\begin{align*} y^{\prime }&=\left (t^{2}+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

1.891

18555

\begin{align*} y^{\prime }&=\frac {t^{2}+1}{3 y-y^{2}} \\ \end{align*}

[_separable]

1.724

18556

\begin{align*} y^{\prime }&=\frac {\cot \left (t \right ) y}{1+y} \\ \end{align*}

[_separable]

2.556

18557

\begin{align*} y^{\prime }&=y^{{1}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

2.882

18558

\begin{align*} y^{\prime }&=-\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \\ y \left (2\right ) &= -1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.499

18559

\begin{align*} y^{\prime }&=-\frac {4 t}{y} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_separable]

5.091

18560

\begin{align*} y^{\prime }&=2 t y^{2} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_separable]

4.147

18561

\begin{align*} y^{3}+y^{\prime }&=0 \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_quadrature]

5.133

18562

\begin{align*} y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_separable]

1.833

18563

\begin{align*} y^{\prime }&=t \left (3-y\right ) y \\ \end{align*}

[_separable]

2.909

18564

\begin{align*} y^{\prime }&=y \left (3-t y\right ) \\ \end{align*}

[_Bernoulli]

1.887

18565

\begin{align*} y^{\prime }&=-y \left (3-t y\right ) \\ \end{align*}

[_Bernoulli]

1.833

18566

\begin{align*} y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.872

18567

\begin{align*} y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

1.374

18568

\begin{align*} 3+2 x +\left (-2+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.611

18569

\begin{align*} 2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.906

18570

\begin{align*} 2+3 x^{2}-2 y x +\left (3-x^{2}+6 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

1.753

18571

\begin{align*} 2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

0.079

18572

\begin{align*} y^{\prime }&=-\frac {4 x +2 y}{2 x +3 y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.475

18573

\begin{align*} y^{\prime }&=-\frac {4 x -2 y}{2 x -3 y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.161

18574

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

6.815

18575

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

7.223

18576

\begin{align*} 2 x -2 \,{\mathrm e}^{y x} \sin \left (2 x \right )+{\mathrm e}^{y x} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{y x} x \cos \left (2 x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

4.356

18577

\begin{align*} \frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

2.046

18578

\begin{align*} \ln \left (y\right ) x +y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.716

18579

\begin{align*} \frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\ \end{align*}

[_separable]

4.012

18580

\begin{align*} 2 x -y+\left (-x +2 y\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 3 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.493

18581

\begin{align*} 9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime }&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.770

18582

\begin{align*} x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

1.783

18583

\begin{align*} \frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y}&=0 \\ \end{align*}

[NONE]

10.707

18584

\begin{align*} y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.578

18585

\begin{align*} \left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.342

18586

\begin{align*} 2 y x +3 x^{2} y+y^{3}+\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational]

2.413

18587

\begin{align*} y^{\prime }&=-1+{\mathrm e}^{2 x}+y \\ \end{align*}

[[_linear, ‘class A‘]]

1.747

18588

\begin{align*} \frac {y^{\prime }}{-\sin \left (y\right )+\frac {x}{y}}&=0 \\ \end{align*}

[_quadrature]

0.090

18589

\begin{align*} y+\left (-{\mathrm e}^{-2 y}+2 y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, _with_exponential_symmetries]]

2.311

18590

\begin{align*} {\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.730

18591

\begin{align*} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

1.529

18592

\begin{align*} 3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

1.884

18593

\begin{align*} 3 y x +y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.226

18594

\begin{align*} y^{\prime } y&=x +1 \\ \end{align*}

[_separable]

1.920

18595

\begin{align*} \left (1+y^{4}\right ) y^{\prime }&=x^{4}+1 \\ \end{align*}

[_separable]

1.661

18596

\begin{align*} \frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y}&=1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.670

18597

\begin{align*} x \left (x -1\right ) y^{\prime }&=y \left (1+y\right ) \\ \end{align*}

[_separable]

3.491

18598

\begin{align*} y+\sqrt {x^{2}-y^{2}}&=y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

20.711

18599

\begin{align*} x y^{\prime } y&=\left (x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10.710

18600

\begin{align*} y^{\prime }&=\frac {4 y-7 x}{5 x -y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.085