| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=\frac {3 x^{2}+1}{12 y^{2}-12 y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.763 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x^{2}}{2 y^{2}-6} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.601 |
|
| \begin{align*}
y^{\prime }&=2 y^{2}+x y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.441 |
|
| \begin{align*}
y^{\prime }&=\frac {6-{\mathrm e}^{x}}{3+2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.116 |
|
| \begin{align*}
y^{\prime }&=\frac {2 \cos \left (2 x \right )}{10+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.174 |
|
| \begin{align*}
y^{\prime }&=2 \left (x +1\right ) \left (1+y^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
2.936 |
|
| \begin{align*}
y^{\prime }&=\frac {t \left (4-y\right ) y}{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✗ |
4.058 |
|
| \begin{align*}
y^{\prime }&=\frac {t y \left (4-y\right )}{t +1} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
4.056 |
|
| \begin{align*}
y^{\prime }&=\frac {a y+b}{d +c y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.423 |
|
| \begin{align*}
y^{\prime }+4 y&={\mathrm e}^{-2 t}+t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.924 |
|
| \begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.132 |
|
| \begin{align*}
y+y^{\prime }&=1+t \,{\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.281 |
|
| \begin{align*}
\frac {y}{t}+y^{\prime }&=5+\cos \left (2 t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.693 |
|
| \begin{align*}
-2 y+y^{\prime }&=3 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.069 |
|
| \begin{align*}
2 y+t y^{\prime }&=\sin \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.751 |
|
| \begin{align*}
2 t y+y^{\prime }&=16 t \,{\mathrm e}^{-t^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.026 |
|
| \begin{align*}
4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| \begin{align*}
y+2 y^{\prime }&=3 t \\
\end{align*} | [[_linear, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 0.789 |
|
| \begin{align*}
-y+t y^{\prime }&=t^{3} {\mathrm e}^{-t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.909 |
|
| \begin{align*}
y+y^{\prime }&=5 \sin \left (2 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.641 |
|
| \begin{align*}
y+2 y^{\prime }&=3 t^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.471 |
|
| \begin{align*}
-y+y^{\prime }&=2 \,{\mathrm e}^{2 t} t \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.562 |
|
| \begin{align*}
y^{\prime }+2 y&=t \,{\mathrm e}^{-2 t} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.402 |
|
| \begin{align*}
t y^{\prime }+4 y&=t^{2}-t +1 \\
y \left (1\right ) &= {\frac {1}{4}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.977 |
|
| \begin{align*}
\frac {2 y}{t}+y^{\prime }&=\frac {\cos \left (t \right )}{t^{2}} \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.901 |
|
| \begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.093 |
|
| \begin{align*}
2 y+t y^{\prime }&=\sin \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.875 |
|
| \begin{align*}
4 t^{2} y+t^{3} y^{\prime }&={\mathrm e}^{-t} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.853 |
|
| \begin{align*}
\left (t +1\right ) y+t y^{\prime }&=t \\
y \left (\ln \left (2\right )\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.411 |
|
| \begin{align*}
y^{\prime }-\frac {y}{3}&=3 \cos \left (t \right ) \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.684 |
|
| \begin{align*}
-y+2 y^{\prime }&={\mathrm e}^{\frac {t}{3}} \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.231 |
|
| \begin{align*}
-2 y+3 y^{\prime }&={\mathrm e}^{-\frac {\pi t}{2}} \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.436 |
|
| \begin{align*}
\left (t +1\right ) y+t y^{\prime }&=2 t \,{\mathrm e}^{-t} \\
y \left (1\right ) &= a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.683 |
|
| \begin{align*}
2 y+t y^{\prime }&=\frac {\sin \left (t \right )}{t} \\
y \left (-\frac {\pi }{2}\right ) &= a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.891 |
|
| \begin{align*}
y \cos \left (t \right )+\sin \left (t \right ) y^{\prime }&={\mathrm e}^{t} \\
y \left (1\right ) &= a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
26.003 |
|
| \begin{align*}
\frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.713 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{3}&=1-\frac {t}{4} \\
y \left (0\right ) &= y_{0} \\
\end{align*} | [[_linear, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 0.945 |
|
| \begin{align*}
\frac {y}{4}+y^{\prime }&=3+2 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.021 |
|
| \begin{align*}
-y+y^{\prime }&=1+3 \sin \left (t \right ) \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.837 |
|
| \begin{align*}
-\frac {3 y}{2}+y^{\prime }&=3 t +3 \,{\mathrm e}^{t} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.069 |
|
| \begin{align*}
y^{\prime }-6 y&=t^{6} {\mathrm e}^{6 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.235 |
|
| \begin{align*}
\frac {y}{t}+y^{\prime }&=3 \cos \left (2 t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.688 |
|
| \begin{align*}
2 y+t y^{\prime }&=\sin \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.681 |
|
| \begin{align*}
y+2 y^{\prime }&=3 t^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.428 |
|
| \begin{align*}
y \ln \left (t \right )+\left (t -3\right ) y^{\prime }&=2 t \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
5.450 |
|
| \begin{align*}
y+\left (t -4\right ) t y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.122 |
|
| \begin{align*}
\tan \left (t \right ) y+y^{\prime }&=\sin \left (t \right ) \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.994 |
|
| \begin{align*}
2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\
y \left (-3\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.438 |
|
| \begin{align*}
2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\
y \left (1\right ) &= -3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.165 |
|
| \begin{align*}
y+\ln \left (t \right ) y^{\prime }&=\cot \left (t \right ) \\
y \left (2\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
3.582 |
|
| \begin{align*}
y^{\prime }&=\frac {t -y}{2 t +5 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.395 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-t^{2}-y^{2}} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
1.849 |
|
| \begin{align*}
y^{\prime }&=\frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
3.745 |
|
| \begin{align*}
y^{\prime }&=\left (t^{2}+y^{2}\right )^{{3}/{2}} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
1.891 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}+1}{3 y-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.724 |
|
| \begin{align*}
y^{\prime }&=\frac {\cot \left (t \right ) y}{1+y} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.556 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.882 |
|
| \begin{align*}
y^{\prime }&=-\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \\
y \left (2\right ) &= -1 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
3.499 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 t}{y} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_separable] |
✓ |
✗ |
✓ |
✓ |
5.091 |
|
| \begin{align*}
y^{\prime }&=2 t y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.147 |
|
| \begin{align*}
y^{3}+y^{\prime }&=0 \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.133 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_separable] |
✓ |
✗ |
✓ |
✓ |
1.833 |
|
| \begin{align*}
y^{\prime }&=t \left (3-y\right ) y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.909 |
|
| \begin{align*}
y^{\prime }&=y \left (3-t y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.887 |
|
| \begin{align*}
y^{\prime }&=-y \left (3-t y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.833 |
|
| \begin{align*}
y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| \begin{align*}
y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.374 |
|
| \begin{align*}
3+2 x +\left (-2+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.611 |
|
| \begin{align*}
2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.906 |
|
| \begin{align*}
2+3 x^{2}-2 y x +\left (3-x^{2}+6 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
1.753 |
|
| \begin{align*}
2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.079 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 x +2 y}{2 x +3 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.475 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 x -2 y}{2 x -3 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
9.161 |
|
| \begin{align*}
{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} | [_exact] | ✓ | ✓ | ✓ | ✗ | 6.815 |
|
| \begin{align*}
{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[‘x=_G(y,y’)‘] |
✗ |
✗ |
✗ |
✗ |
7.223 |
|
| \begin{align*}
2 x -2 \,{\mathrm e}^{y x} \sin \left (2 x \right )+{\mathrm e}^{y x} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{y x} x \cos \left (2 x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
4.356 |
|
| \begin{align*}
\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.046 |
|
| \begin{align*}
\ln \left (y\right ) x +y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.716 |
|
| \begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.012 |
|
| \begin{align*}
2 x -y+\left (-x +2 y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.493 |
|
| \begin{align*}
9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime }&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.770 |
|
| \begin{align*}
x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.783 |
|
| \begin{align*}
\frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y}&=0 \\
\end{align*} |
[NONE] |
✓ |
✓ |
✓ |
✗ |
10.707 |
|
| \begin{align*}
y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
1.578 |
|
| \begin{align*}
\left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.342 |
|
| \begin{align*}
2 y x +3 x^{2} y+y^{3}+\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational] |
✓ |
✓ |
✓ |
✗ |
2.413 |
|
| \begin{align*}
y^{\prime }&=-1+{\mathrm e}^{2 x}+y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.747 |
|
| \begin{align*}
\frac {y^{\prime }}{-\sin \left (y\right )+\frac {x}{y}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.090 |
|
| \begin{align*}
y+\left (-{\mathrm e}^{-2 y}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_exponential_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.311 |
|
| \begin{align*}
{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
3.730 |
|
| \begin{align*}
\frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✗ |
✗ |
✗ |
✗ |
1.529 |
|
| \begin{align*}
3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime }&=0 \\
\end{align*} | [_rational] | ✓ | ✓ | ✓ | ✗ | 1.884 |
|
| \begin{align*}
3 y x +y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.226 |
|
| \begin{align*}
y^{\prime } y&=x +1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.920 |
|
| \begin{align*}
\left (1+y^{4}\right ) y^{\prime }&=x^{4}+1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.661 |
|
| \begin{align*}
\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y}&=1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.670 |
|
| \begin{align*}
x \left (x -1\right ) y^{\prime }&=y \left (1+y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.491 |
|
| \begin{align*}
y+\sqrt {x^{2}-y^{2}}&=y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
20.711 |
|
| \begin{align*}
x y^{\prime } y&=\left (x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
10.710 |
|
| \begin{align*}
y^{\prime }&=\frac {4 y-7 x}{5 x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
8.085 |
|