2.2.185 Problems 18401 to 18500

Table 2.383: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

18401

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.707

18402

\begin{align*} x_{1}^{\prime }&=-2 t x_{1}^{2} \\ x_{2}^{\prime }&=\frac {x_{2}+t}{t} \\ \end{align*}

system_of_ODEs

0.036

18403

\begin{align*} x_{1}^{\prime }&={\mathrm e}^{t -x_{1}} \\ x_{2}^{\prime }&=2 \,{\mathrm e}^{x_{1}} \\ \end{align*}

system_of_ODEs

0.036

18404

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=\frac {y^{2}}{x} \\ \end{align*}

system_of_ODEs

0.032

18405

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}^{2}}{x_{2}} \\ x_{2}^{\prime }&=x_{2}-x_{1} \\ \end{align*}

system_of_ODEs

0.033

18406

\begin{align*} x^{\prime }&=\frac {{\mathrm e}^{-x}}{t} \\ y^{\prime }&=\frac {x \,{\mathrm e}^{-y}}{t} \\ \end{align*}

system_of_ODEs

0.033

18407

\begin{align*} x^{\prime }&=\frac {t +y}{x+y} \\ y^{\prime }&=\frac {-t +x}{x+y} \\ \end{align*}

system_of_ODEs

0.036

18408

\begin{align*} x^{\prime }&=\frac {t -y}{-x+y} \\ y^{\prime }&=\frac {-t +x}{-x+y} \\ \end{align*}

system_of_ODEs

0.033

18409

\begin{align*} x^{\prime }&=\frac {t +y}{x+y} \\ y^{\prime }&=\frac {t +x}{x+y} \\ \end{align*}

system_of_ODEs

0.031

18410

\begin{align*} x^{\prime }&=-9 y \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.394

18411

\begin{align*} x^{\prime }&=t +y \\ y^{\prime }&=-t +x \\ \end{align*}

system_of_ODEs

0.516

18412

\begin{align*} x^{\prime }+3 x+4 y&=0 \\ y^{\prime }+2 x+5 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.435

18413

\begin{align*} x^{\prime }&=x+5 y \\ y^{\prime }&=-x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -2 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.569

18414

\begin{align*} 4 x^{\prime }-y^{\prime }+3 x&=\sin \left (t \right ) \\ x^{\prime }+y&=\cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.837

18415

\begin{align*} x^{\prime }&=z-y \\ y^{\prime }&=z \\ z^{\prime }&=z-x \\ \end{align*}

system_of_ODEs

0.778

18416

\begin{align*} x^{\prime }&=y+z \\ y^{\prime }&=x+z \\ z^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.546

18417

\begin{align*} x^{\prime \prime }&=y \\ y^{\prime \prime }&=x \\ \end{align*}

system_of_ODEs

0.024

18418

\begin{align*} x^{\prime \prime }+y^{\prime }+x&=0 \\ x^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

system_of_ODEs

0.032

18419

\begin{align*} x^{\prime \prime }&=3 x+y \\ y^{\prime }&=-2 x \\ \end{align*}

system_of_ODEs

0.028

18420

\begin{align*} x^{\prime \prime }&=x^{2}+y \\ y^{\prime }&=-2 x x^{\prime }+x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.020

18421

\begin{align*} x^{\prime }&=x^{2}+y^{2} \\ y^{\prime }&=2 x y \\ \end{align*}

system_of_ODEs

0.027

18422

\begin{align*} x^{\prime }&=-\frac {1}{y} \\ y^{\prime }&=\frac {1}{x} \\ \end{align*}

system_of_ODEs

0.026

18423

\begin{align*} x^{\prime }&=\frac {x}{y} \\ y^{\prime }&=\frac {y}{x} \\ \end{align*}

system_of_ODEs

0.026

18424

\begin{align*} x^{\prime }&=\frac {y}{x-y} \\ y^{\prime }&=\frac {x}{x-y} \\ \end{align*}

system_of_ODEs

0.029

18425

\begin{align*} x^{\prime }&=\sin \left (x\right ) \cos \left (y\right ) \\ y^{\prime }&=\cos \left (x\right ) \sin \left (y\right ) \\ \end{align*}

system_of_ODEs

0.042

18426

\begin{align*} {\mathrm e}^{t} x^{\prime }&=\frac {1}{y} \\ {\mathrm e}^{t} y^{\prime }&=\frac {1}{x} \\ \end{align*}

system_of_ODEs

0.036

18427

\begin{align*} x^{\prime }&=\cos \left (x\right )^{2} \cos \left (y\right )^{2}+\sin \left (x\right )^{2} \cos \left (y\right )^{2} \\ y^{\prime }&=-\frac {\sin \left (2 x\right ) \sin \left (2 y\right )}{2} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.046

18428

\begin{align*} x^{\prime }&=8 y-x \\ y^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.408

18429

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.352

18430

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.552

18431

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.428

18432

\begin{align*} x^{\prime }&=4 x-5 y \\ y^{\prime }&=x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.521

18433

\begin{align*} x^{\prime }&=y+z-x \\ y^{\prime }&=x-y+z \\ z^{\prime }&=x+y-z \\ \end{align*}

system_of_ODEs

0.564

18434

\begin{align*} x^{\prime }&=2 x-y+z \\ y^{\prime }&=x+2 y-z \\ z^{\prime }&=x-y+2 z \\ \end{align*}

system_of_ODEs

0.616

18435

\begin{align*} x^{\prime }&=2 x-y+z \\ y^{\prime }&=x+z \\ z^{\prime }&=y-2 z-3 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.668

18436

\begin{align*} x^{\prime }+2 x-y&=-{\mathrm e}^{2 t} \\ y^{\prime }+3 x-2 y&=6 \,{\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.848

18437

\begin{align*} x^{\prime }&=x+y-\cos \left (t \right ) \\ y^{\prime }&=-y-2 x+\cos \left (t \right )+\sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

1.095

18438

\begin{align*} x^{\prime }&=y+\tan \left (t \right )^{2}-1 \\ y^{\prime }&=\tan \left (t \right )-x \\ \end{align*}

system_of_ODEs

0.878

18439

\begin{align*} x^{\prime }&=-4 x-2 y+\frac {2}{{\mathrm e}^{t}-1} \\ y^{\prime }&=6 x+3 y-\frac {3}{{\mathrm e}^{t}-1} \\ \end{align*}

system_of_ODEs

0.029

18440

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x+\frac {1}{\cos \left (t \right )} \\ \end{align*}

system_of_ODEs

0.687

18441

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=1-x \\ \end{align*}

system_of_ODEs

0.585

18442

\begin{align*} x^{\prime }&=3-2 y \\ y^{\prime }&=2 x-2 t \\ \end{align*}

system_of_ODEs

0.655

18443

\begin{align*} x^{\prime }&=-y+\sin \left (t \right ) \\ y^{\prime }&=x+\cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.616

18444

\begin{align*} x^{\prime }&=x+y+{\mathrm e}^{t} \\ y^{\prime }&=x+y-{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.554

18445

\begin{align*} x^{\prime }&=4 x-5 y+4 t -1 \\ y^{\prime }&=x-2 y+t \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.806

18446

\begin{align*} x^{\prime }&=y-x+{\mathrm e}^{t} \\ y^{\prime }&=x-y+{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.644

18447

\begin{align*} x^{\prime }+y&=t^{2} \\ -x+y^{\prime }&=t \\ \end{align*}

system_of_ODEs

0.628

18448

\begin{align*} x^{\prime }+y^{\prime }+y&={\mathrm e}^{-t} \\ 2 x^{\prime }+y^{\prime }+2 y&=\sin \left (t \right ) \\ \end{align*}

system_of_ODEs

0.554

18449

\begin{align*} x^{\prime }&=2 x+y-2 z+2-t \\ y^{\prime }&=1-x \\ z^{\prime }&=x+y-z+1-t \\ \end{align*}

system_of_ODEs

1.326

18450

\begin{align*} x^{\prime }+x+2 y&=2 \,{\mathrm e}^{-t} \\ y^{\prime }+y+z&=1 \\ z^{\prime }+z&=1 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.858

18451

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=x+2 y \\ \end{align*}

system_of_ODEs

0.382

18452

\begin{align*} x^{\prime }&=6 x+y \\ y^{\prime }&=4 x+3 y \\ \end{align*}

system_of_ODEs

0.395

18453

\begin{align*} x^{\prime }&=2 x-4 y+1 \\ y^{\prime }&=-x+5 y \\ \end{align*}

system_of_ODEs

0.630

18454

\begin{align*} x^{\prime }&=3 x+y+{\mathrm e}^{t} \\ y^{\prime }&=x+3 y-{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.575

18455

\begin{align*} x^{\prime }&=2 x+4 y+\cos \left (t \right ) \\ y^{\prime }&=-x-2 y+\sin \left (t \right ) \\ \end{align*}

system_of_ODEs

0.557

18456

\begin{align*} x^{\prime }+3 x&={\mathrm e}^{-2 t} \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.182

18457

\begin{align*} x^{\prime }-3 x&=3 t^{3}+3 t^{2}+2 t +1 \\ x \left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.152

18458

\begin{align*} x^{\prime }-x&=\cos \left (t \right )-\sin \left (t \right ) \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.144

18459

\begin{align*} 2 x^{\prime }+6 x&=t \,{\mathrm e}^{-3 t} \\ x \left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.128

18460

\begin{align*} x^{\prime }+x&=2 \sin \left (t \right ) \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.161

18461

\begin{align*} x^{\prime \prime }&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.099

18462

\begin{align*} x^{\prime \prime }&=1 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.086

18463

\begin{align*} x^{\prime \prime }&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.144

18464

\begin{align*} x^{\prime \prime }+x^{\prime }&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.079

18465

\begin{align*} x^{\prime \prime }+x^{\prime }&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.099

18466

\begin{align*} x^{\prime \prime }-x^{\prime }&=1 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.116

18467

\begin{align*} x^{\prime \prime }+x&=t \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.090

18468

\begin{align*} x^{\prime \prime }+6 x^{\prime }&=12 t +2 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_y]]

0.102

18469

\begin{align*} x^{\prime \prime }-2 x^{\prime }+2 x&=2 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.097

18470

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=4 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.135

18471

\begin{align*} 2 x^{\prime \prime }-2 x^{\prime }&=\left (t +1\right ) {\mathrm e}^{t} \\ x \left (0\right ) &= {\frac {1}{2}} \\ x^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_y]]

0.146

18472

\begin{align*} x^{\prime \prime }+x&=2 \cos \left (t \right ) \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.191

18473

\begin{align*} y^{\prime }&=\frac {x^{4}}{y} \\ \end{align*}

[_separable]

2.487

18474

\begin{align*} y^{\prime }&=\frac {x^{2} \left (x^{3}+1\right )}{y} \\ \end{align*}

[_separable]

1.706

18475

\begin{align*} y^{\prime }+y^{3} \sin \left (x \right )&=0 \\ \end{align*}

[_separable]

3.500

18476

\begin{align*} y^{\prime }&=\frac {7 x^{2}-1}{7+5 y} \\ \end{align*}

[_separable]

1.954

18477

\begin{align*} y^{\prime }&=\sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \\ \end{align*}

[_separable]

3.108

18478

\begin{align*} y^{\prime } x&=\sqrt {1-y^{2}} \\ \end{align*}

[_separable]

3.562

18479

\begin{align*} y^{\prime } y&=\left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \\ \end{align*}

[_separable]

2.740

18480

\begin{align*} y^{\prime }&=\frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \\ \end{align*}

[_separable]

2.647

18481

\begin{align*} y^{\prime }&=\frac {x^{2}}{1+y^{2}} \\ \end{align*}

[_separable]

1.510

18482

\begin{align*} y^{\prime }&=\frac {\sec \left (x \right )^{2}}{y^{3}+1} \\ \end{align*}

[_separable]

2.264

18483

\begin{align*} y^{\prime }&=4 \sqrt {y x} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

9.221

18484

\begin{align*} y^{\prime }&=x \left (y-y^{2}\right ) \\ \end{align*}

[_separable]

2.920

18485

\begin{align*} y^{\prime }&=\left (1-12 x \right ) y^{2} \\ y \left (0\right ) &= -{\frac {1}{8}} \\ \end{align*}

[_separable]

3.728

18486

\begin{align*} y^{\prime }&=\frac {3-2 x}{y} \\ y \left (1\right ) &= -6 \\ \end{align*}

[_separable]

2.753

18487

\begin{align*} x +y y^{\prime } {\mathrm e}^{-x}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.305

18488

\begin{align*} r^{\prime }&=\frac {r^{2}}{\theta } \\ r \left (1\right ) &= 2 \\ \end{align*}

[_separable]

2.612

18489

\begin{align*} y^{\prime }&=\frac {3 x}{y+x^{2} y} \\ y \left (0\right ) &= -7 \\ \end{align*}

[_separable]

1.984

18490

\begin{align*} y^{\prime }&=\frac {2 x}{1+2 y} \\ y \left (2\right ) &= 0 \\ \end{align*}

[_separable]

3.500

18491

\begin{align*} y^{\prime }&=2 x y^{2}+4 x^{3} y^{2} \\ y \left (1\right ) &= -2 \\ \end{align*}

[_separable]

3.707

18492

\begin{align*} y^{\prime }&=x^{2} {\mathrm e}^{-3 y} \\ y \left (2\right ) &= 0 \\ \end{align*}

[_separable]

3.505

18493

\begin{align*} y^{\prime }&=\left (1+y^{2}\right ) \tan \left (2 x \right ) \\ y \left (0\right ) &= -\sqrt {3} \\ \end{align*}

[_separable]

5.576

18494

\begin{align*} y^{\prime }&=\frac {x \left (x^{2}+1\right ) y^{5}}{6} \\ y \left (0\right ) &= -2^{{1}/{3}} \\ \end{align*}

[_separable]

2.843

18495

\begin{align*} y^{\prime }&=\frac {-{\mathrm e}^{x}+3 x^{2}}{2 y-11} \\ y \left (0\right ) &= 11 \\ \end{align*}

[_separable]

2.634

18496

\begin{align*} x^{2} y^{\prime }&=y-y x \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

2.801

18497

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.501

18498

\begin{align*} 2 y^{\prime } y&=\frac {x}{\sqrt {x^{2}-4}} \\ y \left (3\right ) &= -1 \\ \end{align*}

[_separable]

3.024

18499

\begin{align*} \sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime }&=0 \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{3} \\ \end{align*}

[_separable]

25.050

18500

\begin{align*} \sqrt {-x^{2}+1}\, y^{2} y^{\prime }&=\arcsin \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.484