2.2.184 Problems 18301 to 18400

Table 2.381: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

18301

\begin{align*} x^{2} y^{\prime \prime }-2 y&=\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.019

18302

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=-\frac {16 \ln \left (x \right )}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.497

18303

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y&=x^{2}-2 x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.326

18304

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.244

18305

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 \ln \left (x \right )^{2}+12 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.187

18306

\begin{align*} \left (x +1\right )^{3} y^{\prime \prime }+3 \left (x +1\right )^{2} y^{\prime }+\left (x +1\right ) y&=6 \ln \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.323

18307

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.894

18308

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.364

18309

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[_Jacobi]

0.670

18310

\begin{align*} \left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y&=6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.992

18311

\begin{align*} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.106

18312

\begin{align*} y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.140

18313

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.130

18314

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y&=1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.213

18315

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=5 x^{4} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.203

18316

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=\left (x -1\right )^{2} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.230

18317

\begin{align*} y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{-2 x}&={\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.320

18318

\begin{align*} \left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y&=\frac {\left (x -1\right )^{2}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.254

18319

\begin{align*} y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x}&=x \,{\mathrm e}^{2 x}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.411

18320

\begin{align*} x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y&=x^{2} \left (2 x -3\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.233

18321

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\sin \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

18322

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.164

18323

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\cos \left (x \right )^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

18324

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.230

18325

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

18326

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.496

18327

\begin{align*} y^{\prime \prime }+y&=\frac {2}{\sin \left (x \right )^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.544

18328

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.504

18329

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }&=\frac {x -1}{x^{3}} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.240

18330

\begin{align*} y^{\prime \prime } x -\left (2 x^{2}+1\right ) y^{\prime }&=4 x^{3} {\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.650

18331

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.791

18332

\begin{align*} x \ln \left (x \right ) y^{\prime \prime }-y^{\prime }&=\ln \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.490

18333

\begin{align*} y^{\prime \prime } x +\left (2 x -1\right ) y^{\prime }&=-4 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.571

18334

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }&=\cot \left (x \right ) \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.485

18335

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }+y&=1 \\ y \left (\infty \right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.781

18336

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }+y&=\frac {6+x}{x^{2}} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

44.346

18337

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=\frac {1}{x^{2}+1} \\ y \left (\infty \right ) &= \frac {\pi ^{2}}{8} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.973

18338

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (x -1\right )^{2} {\mathrm e}^{x} \\ y \left (-\infty \right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.113

18339

\begin{align*} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y&=\frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

15.670

18340

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y&=4 \,{\mathrm e}^{x} \\ y \left (-\infty \right ) &= 0 \\ y^{\prime }\left (-1\right ) &= -{\mathrm e}^{-1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

6.050

18341

\begin{align*} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+y x&=2 \ln \left (x \right ) \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

83.073

18342

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y&=2 x -2 \\ y \left (\infty \right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

70.891

18343

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.321

18344

\begin{align*} x^{\prime \prime }+2 x^{\prime }+6 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.305

18345

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.291

18346

\begin{align*} x^{\prime \prime }+{x^{\prime }}^{2}+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.703

18347

\begin{align*} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

13.440

18348

\begin{align*} x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.520

18349

\begin{align*} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.809

18350

\begin{align*} x^{\prime \prime }+x {x^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.316

18351

\begin{align*} x^{\prime \prime }+\left (2+x\right ) x^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.939

18352

\begin{align*} x^{\prime \prime }-x^{\prime }+x-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

47.795

18353

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.375

18354

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.815

18355

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2 \pi \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.060

18356

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2 \pi \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.773

18357

\begin{align*} 1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.799

18358

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= \alpha \\ \end{align*}

[[_2nd_order, _missing_x]]

1.091

18359

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.894

18360

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= {\mathrm e}^{\pi } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

18361

\begin{align*} y^{\prime \prime }+\alpha y^{\prime }&=0 \\ y \left (0\right ) &= {\mathrm e}^{\alpha } \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.238

18362

\begin{align*} y^{\prime \prime }+\alpha ^{2} y&=1 \\ y^{\prime }\left (0\right ) &= \alpha \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.611

18363

\begin{align*} y^{\prime \prime }+y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.763

18364

\begin{align*} y^{\prime \prime }+\lambda ^{2} y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.177

18365

\begin{align*} y^{\prime \prime }+\lambda ^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.856

18366

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \\ y \left (0\right ) &= -1 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.083

18367

\begin{align*} y^{\prime \prime \prime \prime }-\lambda ^{4} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime \prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_high_order, _missing_x]]

0.105

18368

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.683

18369

\begin{align*} 2 y^{\prime \prime }+4 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_y]]

0.099

18370

\begin{align*} 6 y^{\prime \prime } x +6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime }&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_y]]

0.307

18371

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[_linear]

0.289

18372

\begin{align*} y^{\prime }&=\frac {y-x}{x +y} \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.165

18373

\begin{align*} y^{\prime }&=y \sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.335

18374

\begin{align*} y^{\prime \prime }+y x&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.263

18375

\begin{align*} y^{\prime \prime }-\sin \left (x \right ) y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.405

18376

\begin{align*} y^{\prime \prime } x +y \sin \left (x \right )&=x \\ y \left (\pi \right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}
Series expansion around \(x=\pi \).

[[_2nd_order, _linear, _nonhomogeneous]]

1.882

18377

\begin{align*} \ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right )&=0 \\ y \left ({\mathrm e}\right ) &= {\mathrm e}^{-1} \\ y^{\prime }\left ({\mathrm e}\right ) &= 0 \\ \end{align*}
Series expansion around \(x={\mathrm e}\).

[[_2nd_order, _with_linear_symmetries]]

5.237

18378

\begin{align*} y^{\prime \prime \prime }+x \sin \left (y\right )&=0 \\ y \left (0\right ) &= \frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[NONE]

0.039

18379

\begin{align*} y^{\prime }-2 y x&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.255

18380

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.324

18381

\begin{align*} y^{\prime \prime }-y^{\prime } x +y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.293

18382

\begin{align*} y^{\prime \prime }-\left (x^{2}+1\right ) y&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.349

18383

\begin{align*} y^{\prime \prime }&=x^{2} y-y^{\prime } \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.333

18384

\begin{align*} y^{\prime \prime }-{\mathrm e}^{x} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.457

18385

\begin{align*} y^{\prime }&={\mathrm e}^{y}+y x \\ y \left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[‘y=_G(x,y’)‘]

0.280

18386

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.695

18387

\begin{align*} \left (x +1\right ) y^{\prime }-n y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.321

18388

\begin{align*} 9 \left (1-x \right ) x y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

0.721

18389

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x^{2}-\frac {1}{9}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.394

18390

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.394

18391

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.350

18392

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.350

18393

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +4 \left (x^{4}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.486

18394

\begin{align*} y^{\prime \prime } x +\frac {y^{\prime }}{2}+\frac {y}{4}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.706

18395

\begin{align*} y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y&=0 \\ \end{align*}

[_Lienard]

0.377

18396

\begin{align*} y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.366

18397

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.518

18398

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\pi ^{2}-x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.426

18399

\begin{align*} y^{\prime \prime }-4 y&=\cos \left (\pi x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

18400

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\arcsin \left (\sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.517